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Preface

The Plancherel Theorem on Reductive Symmetric Spaces is the third volume in a
three-volume series of Lie Theory aimed at presenting the central role played by
semisimple Lie groups in much of currently active mathematics. These groups, and
their algebraic analogues over fields other than the reals, are of fundamental impor-
tance in geometry and mathematical physics.

In this volume by Erik van den Ban, Henrik Schlichtkrull, and Patrick Delorme,
an extensive survey is given of the spectacular progress during the last 8–10 years
on the problem of deriving the Plancherel theorem on reductive symmetric spaces.
This is the analogue and far-reaching generalization of the theory of Fourier series
and the Fourier transform, obtained independently by Delorme, and van den Ban–
Schlichtkrull. As a culmination of the work by Harish-Chandra, Helgason, Arthur,
Wallach, Oshima, Flensted-Jensen, and many others, this general Plancherel formula
establishes a new level of understanding of harmonic analysis on symmetric spaces,
and it brings many new possibilities for further research in analysis on such mani-
folds. From the point of view of physics, these spaces include the so-called De Sitter
universes.

E. van den Ban The Plancherel theorem for a reductive symmetric space, explains
the basic setup of a reductive symmetric space giving several examples; both con-
crete (and well-known) Plancherel theorems as well as the general form of Plancherel
theorems are presented. A careful study of the structure theory is given, in particular
for the ring of invariant differential operators and for the relevant class of parabolic
subgroups. The Plancherel theorem in a sense provides a joint diagonalization of the
invariant differential operators. A number of rather advanced topics are also covered,
because they are necessary even for the formulation and understanding of the final re-
sult, such as Eisenstein integrals, regularity theorems, and Maass–Selberg relations.
A key step in the proof is the study of the most continuous part of the spectrum, in
a sense the opposite of the discrete spectrum. Combined with a residue calculus for
root systems, interesting in its own right, this completes the discussion of the proof.

H. Schlichtkrull The Paley–Wiener theorem for a reductive symmetric space may
be read independently of the other chapters in this volume, and provides a well-



viii Preface

written account of the basic ingredients in the harmonic analysis on a symmetric
space. The aim is to explain the Paley–Wiener theorem, which is intricately con-
nected to the Plancherel theorem. There is emphasis on assembling the prerequisites,
and on giving illuminating examples. An especially nice survey is devoted to the case
of a Riemannian symmetric space, with an eye towards the complications that arise
in the case of non-Riemannian symmetric spaces. The Paley–Wiener space is de-
fined, and the generalization of all previously known Paley–Wiener theorems (group
case, Riemannian symmetric space) is formulated, with a sketch of the proof.

P. Delorme The Plancherel formula on reductive symmetric spaces from the point
of view of the Schwartz space represents a different approach to the Plancherel the-
orem, although the basic aim is the same as that of van den Ban–Schlichtkrull: To
decompose the left regular representation on the Hilbert space of square-integrable
functions, to decompose the Dirac delta distribution at the origin into invariant distri-
bution vectors, and then give a simultaneous spectral decomposition of the invariant
differential operators. Building on many advanced ideas in deep and recent results in
harmonic analysis, Delorme bases his dicussion and proof on asymptotic expansions
of eigenfunctions, and the theory of intertwining integrals. As an important technical
concept, truncation is introduced, along similar lines that Arthur used in the group
case.

This volume is well suited to graduate students in semisimple Lie theory and
neighboring fields, and also for researchers who wish to learn about some current
core areas and applications of semisimple Lie theory. Prerequisites are some famil-
iarity with basic notions in semisimple Lie group theory, such as, for example, root
systems and the Iwasawa decomposition. Also useful will be some knowledge of
parabolic subgroups, see for example the relevevant chapters in Helgason’s book:
Differential geometry, Lie groups, and Symmetric Spaces, or Knapp’s books: Rep-
resentation Theory of Semisimple Groups. An overview based on examples, and Lie
Groups Beyond an Introduction.

Bent Orsted
Jean-Philippe Anker
August 2004



The Plancherel Theorem
for a Reductive Symmetric Space

Erik P. van den Ban

Mathematisch Instituut, Universiteit Utrecht, PO Box 80 010, 3508 TA Utrecht,
The Netherlands; email: ban@math.uu.nl

1 Introduction

This chapter is based on a series of lectures given at the European School of Group
Theory in August 2000, Odense, Denmark. The purpose of the lectures was to ex-
plain the structure of the Plancherel decomposition for a reductive symmetric space,
as well as many of the main ideas involved in the proof found in joint work with
Henrik Schlichtkrull.1

Reductive Symmetric Spaces The purpose of this exposition is to explain the
structure of the Plancherel decomposition for a reductive symmetric space.

Throughout the text we will assume that G is a reductive Lie group, i.e., a Lie
group whose Lie algebra g is a real reductive Lie algebra. We adopt the convention
to denote Lie groups by Roman capitals and their Lie algebras by the corresponding
German lower case letters. At a later stage we shall impose the restrictive condition
that G belongs to Harish-Chandra’s class of reductive groups. This class contains
all connected semisimple groups with finite center, and was introduced by Harish-
Chandra [56], Sect. 3, in order to accommodate a certain type of inductive argument
that pervades his papers [56]–[58]. We briefly recall the definition and main proper-
ties of this class in an appendix.

We assume σ to be an involution of G, i.e., σ ∈ Aut(G) and σ 2 = I . Moreover,
H is an open subgroup of the group Gσ of fixed points for σ . Equivalently, H is a
subgroup with the property

(Gσ )e ⊂ H ⊂ Gσ .

The pair (G, H) is called a reductive symmetric pair, and the associated homoge-
neous space X := G/H a reductive symmetric space. If G is of the Harish-Chandra
class, then both pair and space are said to be of this class as well.

1 It is my great pleasure to thank Jean-Philippe Anker and Bent Ørsted for inviting me to
give these lectures. I thank the Mathematics Department of the University of Copenhagen
for providing assistance with typing the first version of this exposition.
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The reason for the terminology symmetric space is the following. Let the deriva-
tive of σ at the identity element e be denoted by the same symbol. Then σ is an
involution of the Lie algebra g, which therefore decomposes as the direct sum

g = h ⊕ q (1.1)

where h, q are the +1 and −1 eigenspaces for σ . We note that h equals the Lie
algebra of H and that the decomposition (1.1) is invariant under the adjoint action
by H . It can be shown that there exists a nondegenerate indefinite inner product βe

on q, which is H -invariant. Indeed, if g is semisimple, then the restriction of the
Killing form has this property; in general one may take βe to be a suitable extension
to q of the Killing form’s restriction to [g, g] ∩ q. From TeH (G/H) � g/h � q and
the H -invariance of βe it follows that βe induces a G-invariant pseudo-Riemannian
metric on G/H by the formula

βgH := (�−1
g )∗βe (g ∈ G) .

The natural map σ : G/H → G/H , gH 
→ σ(g)H can be shown to be the geodesic
reflection in the origin eH for the metric β. By homogeneity it follows that the (lo-
cally defined) geodesic reflection Sx at any point x ∈ X extends to a global isometry.
A space with this property is called symmetric. For a more general definition of
symmetric space we refer the reader to [82], p. 98.

The following are motivating and guiding examples of symmetric spaces.

Example 1.1 (The Riemannian case) Assume that Gσ is a maximal compact sub-
group of G and let H = Gσ . The Killing form’s restriction to [g, g]∩q extends to an
H -invariant positive definite inner product on q, so that X = G/H is a Riemannian
symmetric space. In this case the involution σ is called a Cartan involution and it is
customary to write H = K and σ = θ . By the work of E. Cartan, it is well known
that every Riemannian symmetric space of noncompact type arises in this fashion,
see [63] for details.

Example 1.2 (The case of the group) Let �G be a reductive group; then G = �G×�G
is reductive as well. The group G acts transitively on �G by the left times right action
given by (g1, g2)·x = g1xg−1

2 . The stabilizer of �e in G equals the diagonal subgroup
H = diagonal (�G × �G) of G. Hence, the map (g1, g2) 
→ g1g−1

2 induces an
isomorphism of G-spaces

G/H � �G .

Moreover, H = Gσ , where σ is the involution of G defined by (g1, g2) 
→ (g2, g1).

Example 1.3 (The real hyperbolic spaces) Let p, q ≥ 1 be integers, and put n =
p + q. We agree to write x = (x ′, x ′′) according to Rn � Rp ×Rq . Let (· , ·) denote
the standard inner products on Rp and Rq and define the indefinite inner product β
on Rn by
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Figure 1. Xp,q for p = 1

β(x, y) = (x ′, y′)− (x ′′, y′′) .

The real hyperbolic space Xp,q is defined to be the submanifold of Rn consisting of
points x with β(x, x) = 1, or, written out in coordinates,

x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

n = 1 .

Moreover, if p = 1, we impose the additional condition x1 > 0 to ensure that Xp,q is
connected. In this case we may visualize Xp,q as in Figure 1. In case p > 1, we may
visualize the space Xp,q as in Figure 2. The stabilizer of β in SL (n,R) is denoted
by SO (p, q). Its identity component SOe(p, q) acts transitively on Xp,q . Moreover,
the stabilizer of e1 = (1, 0, . . . , 0) equals SOe(p − 1, q), so that

Xp,q � SOe(p, q)/SOe(p − 1, q) .

We define a pseudo-Riemannian structure β on Xp,q by

βx = β

∣∣∣
Tx Xp,q

.

Clearly, β is SOe(p, q)-invariant. Moreover, from

Te1 Xp,q � Rp−1 × Rq

we read that β has signature (p − 1, q). Thus, if p = 1, then Xp,q is Riemannian;
if p > 1, then Xp,q is pseudo-Riemannian, and one can show that Xp,q lies outside
the range of Examples 1.1 and 1.2 in case p = q = 2.

We leave it to the reader to check that the geodesics on Xp,q are the intersections
of Xp,q with two-dimensional linear subspaces of Rn . This is readily seen for the
geodesics through the origin e1; the other geodesics are obtained under the action of
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Figure 2. Xp,q for p > 1

SOe(p, q). The geodesic reflection in the origin e1 is given by the restriction to Xp,q

of the map S : x 
→ (x1,−x2, . . . ,−xn).
Finally, we mention that the hyperbolic spaces can also be defined over the fields

of complex and quaternion numbers, in which case they correspond to the symmetric
pairs (SU (p, q),S (U (1) × U (p − 1, q)) and (Sp (p, q),Sp (1) × Sp (p − 1, q)),
respectively.

The Plancherel Decomposition Being reductive, the groups G and H are unimod-
ular. Therefore, the symmetric space X = G/H carries a G-invariant measure, which
we denote by dx . The associated space of square integrable functions on X is denoted
by L2(X) = L2(X, dx). This space is invariant under left translation, by invariance
of the measure. Accordingly we define the so-called left regular representation L of
G in L2(X) by

Lg f (x) = f (g−1x), (1.2)

for f ∈ L2(X), x ∈ X, g ∈ G. This representation is unitary, again by invariance of
the measure dx .

The Plancherel theorem for X describes the decomposition of (L , L2(X)) as a
direct integral of unitary representations

(L , L2(X)) �
∫ ⊕

Ĝ
mπ π dµ(π) . (1.3)

Here Ĝ denotes the set of equivalence classes of irreducible unitary representations
of G, equipped with a certain topology. Moreover, dµ is a Borel measure on Ĝ,
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called the Plancherel measure. Finally, π 
→ mπ is a measurable function on Ĝ with
values in N∪{∞}, describing the multiplicities by which the representations π enter
the decomposition. In the next section we will describe the meaning of the above
formula in more detail. It amounts to a far reaching generalization of the Plancherel
theorems for both Fourier series and Fourier transform in Euclidean space.

From Examples 3.1 and 3.2 one sees that the Plancherel theorem for reductive
symmetric spaces includes both the Plancherel theorem for Riemannian symmet-
ric spaces and the Plancherel theorem for real reductive groups. In the Riemannian
case the Plancherel theorem was established by Harish-Chandra [50], [51] up to two
conjectures, the first one concerning a property of the Plancherel measure and the
second involving a certain completeness result (injectivity of the associated Fourier
transform). The first of these conjectures was established by S. G. Gindikin and S.
Karpelevič [48], who in fact explicitly determined the Plancherel measure. The com-
pleteness result was established by Harish-Chandra as a byproduct of the theory of
the discrete series, [53]. Later, the completeness was obtained differently in connec-
tion with the Paley–Wiener theorem, [60] and [47].

In the case of the group, see Example 1.2, the Plancherel theorem was established
by Harish-Chandra, in a monumental series of papers, including those on the discrete
series, [53] and [54], and culminating in [56]–[58].

For the hyperbolic spaces, see Example 1.3, the Plancherel formula was obtained
by several authors, of whom we mention V. Molchanov [72], W. Rossmann [81] and
J. Faraut [43]. In other special cases the Plancherel formula was obtained by G. van
Dijk and M. Poel [79] and by N. Bopp and P. Harinck [27]. For the general class of
symmetric spaces of type GC/G the Plancherel theorem was established by Harinck
[49].

The theory of harmonic analysis on general symmetric spaces, in terms of their
general structure theory, gained momentum in the beginning of the 1980’s with the
appearance of the wonderful papers [78], by T. Oshima and J. Sekiguchi on the con-
tinuous spectrum for a general class of symmetric spaces, and [45], by M. Flensted-
Jensen on the discrete series for symmetric spaces. The ideas of the latter paper
inspired the fundamental paper [77] by T. Oshima and T. Matsuki on the classifi-
cation of the discrete series. At that point it became clear that the determination of
the full Plancherel decomposition was a reasonable goal to strive for. Such a result
was announced by Oshima in the 1980’s, see [75], p. 608, but the details have not
appeared.

Starting from the papers [5] and [6] on the so-called minimal principal series,
E.P. van den Ban and H. Schlichtkrull determined the most-continuous part of the
Plancherel decomposition in the early 1990’s, see [16]. A survey of this work can be
found in [82]. In the meantime, P. Delorme, partly in collaboration with J. Carmona,
developed the theory of the generalized principal series, see [34], [38], [35], [39]. In
all papers mentioned in this paragraph the influence of Harish-Chandra’s work in the
case of the group is very strong.

In the fall of 1995, during the special year at the Mittag-Leffler Institute near
Stockholm, Sweden, Delorme on the one hand and van den Ban and Schlichtkrull on
the other, independently announced a proof for the general Plancherel theorem. At
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the same time van den Ban and Schlichtkrull announced a proof of the Paley–Wiener
theorem as well. It should be mentioned that in their original proof of the Plancherel
theorem they needed Delorme’s results from [39] and [38] on the so-called Maass–
Selberg relations. In the meantime they have found an independent proof of these
relations.

The two now existing proofs of the Plancherel theorem are very different. De-
lorme’s proof, which has appeared in [40], builds on the above mentioned theory of
the representations of the generalized principal series, in turn based on the theory
of the discrete series, and on a detailed study of the associated Eisenstein integrals.
In Delorme’s work, the Maass–Selberg relations are obtained through a technique
called truncation of inner products, see [39], which in turn is inspired by work of J.
Arthur [2]. The completeness part of the proof relies on an idea of J. Bernstein [25].
We refer the reader to Delorme’s exposition, elsewhere in this volume, for more in-
formation on his strategy of proof.

The proofs of the Plancherel and Paley–Wiener theorem by van den Ban and
Schlichtkrull are based on a Fourier inversion theorem, published in [17]. The proofs
have now appeared in [21], [22] and [23]. In the present exposition the strategy of
their proof of the Plancherel theorem will be explained. Elsewhere in this volume,
Schlichtkrull discusses the Paley–Wiener theorem.

For other surveys of the general theory we refer the reader to the papers [11],
[19], [9] and [41].

Outline of the Exposition In the next section we will first give a description of the
general idea of what a Plancherel decomposition amounts to. In particular we shall
indicate the interaction with invariant differential operators that plays such an im-
portant role in the theory. These ideas will be illustrated with the classical examples
of Fourier series, the Peter–Weyl theorem for compact groups and the Plancherel
decomposition for compact symmetric spaces.

We then proceed, in Section 3, to discussing the structure theory for reductive
symmetric spaces in terms of the structure theory of reductive algebras. In Section 4
we discuss the structure of the algebra of invariant operators and its interaction with
the discrete series of reductive symmetric spaces. The necessary preparations for the
description of the Plancherel decompositions are continued with the description in
Section 6 of the structure of the so-called σ -parabolic subgroups of G. These are of
importance for the definition of the generalized principal series of representations in
Section 7. Finally, in Sections 8 and 9, the preparations are finished with the descrip-
tion of the H -fixed generalized vectors of the principal series and the action of the
algebra of invariant differential operators on them.

In Section 10 we give the precise formulation of the Plancherel theorem in the
sense of representation theory, both in unnormalized and normalized form. In the
subsequent Section 11 we show that reduction to K -finite functions leads to the
equivalent Plancherel theorem for spherical Schwartz functions. In particular we
motivate and give the definition of Eisenstein integrals. In Section 12 the most con-
tinuous part of the Plancherel decomposition is characterized by the help of certain
differential operators. At that point the exposition will have covered the description
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of the Plancherel decomposition in an order that is transparent from the point of view
of exposition. In contrast, the logical order of the proof is very different.

In the final three sections we give a sketch of the main arguments in the proof.
First, in Section 13, we sketch the proof of the most continuous part of the Plancherel
decomposition, based on a Paley–Wiener shift argument. In this shift, certain resid-
ual contributions are cancelled out by the action of invariant differential operators.
However, it turns out that the residues can be controlled by means of a residue cal-
culus for root systems that we briefly explain in the next section. This leads to a
full Fourier inversion theorem. In the final section we explain how the Plancherel
theorem can be deduced from this Fourier inversion theorem. At the very end, the
associated Fourier transforms that enter the analysis through the residue calculus are
related to representation theory.

2 Direct Integral Decomposition

Introduction In this section we will discuss direct integral decompositions of the
type mentioned in (1.3). We will avoid the machinery of the general representation
theory of locally compact groups or C∗-algebras in which this notion is defined in a
precise way, see, e.g., [42] and [89]. To avoid these technicalities we have opted for
a somewhat naive presentation. Its sole purpose is to provide motivation for the con-
structions, definitions and results that will be presented later in the particular setting
of reductive symmetric spaces. Let us first consider some motivating examples.

Fourier Series From the representation theoretic point of view the theory of
Fourier series may be described as follows. Let G = R/2πZ, H = {0}; then
X = G/H � R/2πZ. Let dx/2π denote translation invariant measure on X, nor-
malized by

∫
X

dx
2π = 1. There is a natural unitary representation L of G on L2(X)

given by Lg f (x) = f (−g + x).
For n ∈ Z, let L2(X)n denote the one-dimensional complex linear space spanned

by the exponential function x 
→ einx . Then

L2(X) = ⊕̂n∈Z L2(X)n ,

the sum being orthogonal and G-invariant. The projection operator onto L2(X)n is
given by f 
→ f̂ (n)ein · , wherein f 
→ f̂ , the Fourier transform, is given by

f̂ (n) = 〈 f, ein · 〉L2(X) =
∫ 2π

0
f (x)e−inx dx

2π
.

Here and in the following, complex positive definite inner products will be denoted
by 〈 · , · 〉, and will be assumed to be antilinear in the second variable.

The Fourier transform maps L2(X) into the space CZ of functions Z → C and
intertwines the G-action on the first of these spaces with the G-action on the second
given by x ·(cn)n∈Z = (e−inx cn)n∈Z. The Plancherel theorem asserts that the Fourier
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transform is an isometry from L2(X) onto �2(Z), whence the Parseval identities.
Equivalently, the Fourier transform is inverted by its adjoint J , which is given by

(cn)n∈Z 
→
∑
n∈Z

cnein · .

The Peter–Weyl Theorem This theorem generalizes the theory of Fourier series
to the case of a compact group G. We fix a choice of bi-invariant Haar measure dx
on G by requiring it to be normalized, i.e.,

∫
G dx = 1. The left regular representa-

tion L and the right regular representation R of G in the associated space of square
integrable representations are defined by

Lg f (x) = f (g−1x) and Rg f (x) = f (xg), (2.1)

for f ∈ L2(G), g ∈ G and x ∈ G. These representations are unitary, by bi-invariance
of the measure. Accordingly, the exterior tensor product L ⊗ R defines a unitary
representation of G × G in L2(G).

Let Ĝ be the set of (equivalence classes of) irreducible unitary representations of
G. According to the Peter–Weyl theorem the following is a G × G-invariant orthog-
onal direct sum decomposition,

L2(G) = ⊕̂δ∈Ĝ L2(G)δ , (2.2)

where each space L2(G)δ can be described as follows. Let Vδ be a finite-dimensional
Hilbert space in which δ is unitarily realized. Then L2(G)δ is the image of the map
Mδ : End(Vδ) → C∞(G) given by

Mδ(T )(x) = tr (δ(x)−1 ◦ T ) (T ∈ End(Vδ), x ∈ G) .

The map Mδ intertwines the representation δ ⊗ δ∗ of G × G in End(Vδ) � Vδ ⊗ V ∗
δ

with the representation L ⊗ R of G ×G in L2(G). The latter is unitary because dx is
bi-G-invariant. We equip End(Vδ) with the Hilbert–Schmid (or tensor) inner product
〈 · , · 〉HS and denote the associated norm by ‖ · ‖HS. Then by the Schur orthogonality
relations, the map

√
dim δ Mδ is an isometry, for every δ ∈ Ĝ.

A straightforward calculation shows that the adjoint of Mδ : End(Vδ) → L2(G)

is given by the map L2(G) → End(Vδ), f 
→ δ( f ), where, as usual,

δ( f ) :=
∫

G
f (x)δ(x) dx . (2.3)

It follows that for every δ ∈ Ĝ the map f 
→ √
dim δ δ( f ) is an isometry L2(G)δ →

End(Vδ). Accordingly, if f ∈ L2(G), then

‖ f ‖2
L2(G)

=
∑
δ∈Ĝ

dim(δ) ‖δ( f )‖2
HS.

We equip the algebraic direct sum of the spaces End(Vδ), for δ ∈ Ĝ, with the direct
sum of the inner products dim(δ)〈 · , · 〉HS. The completion of this pre-Hilbert space
is denoted by
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H := ⊕̂δ∈Ĝ End(Vδ) . (2.4)

The direct sum π of the representations δ ⊗ δ∗ is a unitary representation of G × G
in H.

For f ∈ L2(G) we define the Fourier transform f̂ ∈ H by f̂ (δ) = δ( f ) ∈
End(Vδ), for every δ ∈ Ĝ. Then the Peter–Weyl theorem implies that the Fourier
transform f 
→ f̂ defines an isometry L2(G) � H, intertwining the unitary repre-
sentations L ⊗ R and π of G × G. This result is called the Plancherel theorem for
the group G. The associated decomposition

L ⊗ R � ⊕̂δ∈Ĝ δ ⊗ δ∗ (2.5)

as a representation of G × G is called the Plancherel decomposition. Its constituents
δ⊗δ∗ are mutually inequivalent irreducible representations of G×G. For this reason,
the decomposition (2.5) is said to be multiplicity free with respect to the action of
G × G. We thus see that it is very natural to view the group G as equipped with the
left times right action of G × G. This amounts to viewing the group as a symmetric
space for G × G, as explained in Example 1.2.

By the Plancherel theorem, the inverse J of the Fourier transform equals its
transpose, hence is given by the formula

J (T ) =
∑
δ∈Ĝ

dim δ Mδ(Tδ) ,

for T = (Tδ | δ ∈ Ĝ) ∈ H. In particular, the orthogonal projection Pδ : L2(G) →
L2(G)δ is given by

Pδ( f ) = dim δ Mδ( f̂ (δ)). (2.6)

We end this discussion with a slightly different description of the map Mδ . If
V is a complex linear space, then by V we denote its conjugate. Thus, as a real
linear space V equals V , but the complex multiplication is given by (z, v) 
→ zv,
C × V → V .

A sesquilinear inner product 〈 · , · 〉V on V may now be viewed as a complex
bilinear map V × V → C. If V is a Hilbert space for 〈 · , · 〉, then the map η 
→
〈 · , η〉V induces an isomorphism from V onto the dual Hilbert space V ∗, via which
we shall identify these spaces. Note that the dual inner product on V ∗ corresponds
with the inner product on V given by 〈v,w〉V = 〈w, v〉V for v,w ∈ V .

The map Mδ may now also be described as the matrix coefficient map Vδ⊗V δ →
C∞(G) given by

Mδ(v ⊗ η)(x) = 〈v, δ(x)η〉Vδ , (2.7)

for v ∈ Vδ , η ∈ V δ and x ∈ G.
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Compact Homogeneous Spaces Let G be a compact Lie group and H a closed
subgroup. Put X = G/H and let dx be normalized invariant measure of X. Then
we may identify L2(X) with the subspace L2(G)H of right-H -invariant functions in
L2(G). Accordingly, the left regular representation LX of G in L2(X) coincides with
the restriction of L .

Let the matrix coefficient map Mδ : Vδ ⊗ V δ → C∞(G) be defined as in (2.7),
and put

MX,δ := Mδ|Vδ⊗V
H
δ

.

Then by right equivariance of Mδ it follows that MX,δ maps Vδ⊗V
H
δ bijectively onto

L2(X)δ := L2(G)δ ∩ L2(G)H .

Moreover, the map MX,δ intertwines the G-representations δ ⊗ 1 and L . The adjoint
of the map MX,δ is readily seen to be given by

f 
→ f̂ X (δ) := f̂ (δ)|V H
δ

∈ Vδ ⊗ V
H
δ .

Let Ĝ H denote the set of δ ∈ Ĝ with the property that V δ has nontrivial H -invariant
elements. Then it follows from the invariance of the decomposition (2.2) that

L2(X) = ⊕̂δ∈Ĝ H
L2(X)δ. (2.8)

Moreover, the orthogonal projection Pδ from L2(X) onto L2(X)δ is now given by
the formula

Pδ( f ) = dim δ MX,δ( f̂X(δ)).

Next, let H, π be defined as in (2.4) and let HX be the closed subspace of H consist-
ing of elements that are π(e, h)-invariant for all h ∈ H . Then

HX = ⊕̂δ∈Ĝ Vδ ⊗ V
H
δ .

Let πX be the representation of G in HX given by πX (g) = π(g, e), for g ∈ G. Thus,
πX is the orthogonal direct sum of the representations δ ⊗ 1, for δ ∈ Ĝ. The above
reasoning leads to the following Plancherel theorem for the compact homogeneous
space X.

The Fourier transform f 
→ f̂ X defines an isometry from L2(X) onto HX , which
intertwines the representations LX and πX of G. Thus, we have the unitary equiva-
lence

LX � ⊕̂δ∈Ĝ H
mδ δ, (2.9)

where mδ = dim(V
H
δ ). Moreover, the inverse transform JX is the adjoint of f 
→ f̂X

and given by
JX(T ) =

∑
δ∈Ĝ H

dim δ MX,δ(Tδ)

for T ∈ HX.
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Compact Symmetric Spaces We retain the notation of the previous subsection,
and assume in addition that G is a compact connected semisimple Lie group and
that the subgroup H is the group Gσ of fixed points for an involution σ of G. Then
the associated homogeneous space X = G/H is a compact symmetric space. In this
case it is known that

dim V
H
δ = 1 (2.10)

for δ ∈ Ĝ H . Thus, it follows from (2.9) that (LX, L2(X)) admits the multiplicity free
decomposition

LX ∼ ⊕δ∈Ĝ H
δ . (2.11)

If G = SO (n), H = SO (n − 1), then X = Sn and the decomposition corresponds
to the one known from the theory of spherical harmonics.

The Compact Group as a Symmetric Space We now assume that �G is a compact
Lie group. Then by the Peter–Weyl theorem for the group �G we have the Plancherel
decomposition (2.5) which now becomes the following decomposition of the exterior
tensor product representation L ⊗ R of �G × �G in L2(�G),

L ⊗ R � ⊕̂δ∈�Ĝ δ ⊗ δ∗. (2.12)

As said earlier, this shows that it is very natural to view �G as a homogeneous space
for G := �G × �G via the left times right action. As in Example 1.2 this viewpoint
leads to the natural identification of the G-space �G with the symmetric G-space
X := G/H , where H is the diagonal subgroup of �G × �G. The identification natu-
rally induces an isometry L2(�G) � L2(X), via which L ⊗ R corresponds with the
left regular representation LX of G in L2(X). Thus, (2.12) amounts to the Plancherel
decomposition for the space X.

On the other hand, since X is a compact symmetric space for G, the Plancherel
decomposition (2.11) can be obtained as a consequence of the Peter–Weyl theorem
for G. We will proceed to identify it with the decomposition (2.12). The irreducible
representations of G are the representations of the form δ ⊗ ρ, with δ and ρ irre-
ducible representations of �G. Let Vδ and Vρ be (finite dimensional) Hilbert spaces
in which δ and ρ are realized, respectively. Then

(Vδ ⊗ Vρ)
H � Hom�G(V ∗

ρ , Vδ),

naturally. It follows that the map δ 
→ δ ⊗ δ∗ induces a bijection

�Ĝ � Ĝ H .

Moreover, if δ ∈ �Ĝ, then (Vδ ⊗ V ∗
δ )

H � CI , by Schur’s lemma, which is in agree-
ment with the more general assertion (2.10). The decomposition (2.11) is thus seen
to coincide with (2.12).
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Harmonic Analysis on Noncompact Spaces If the reductive symmetric space
X = G/H is compact, then the Plancherel decomposition corresponds to the decom-
position of L2(X) into invariant subspaces, which are finite multiples of irreducible
representations, see (2.8).

In contrast, this cannot be expected when X is noncompact. This is already ap-
parent from the classical example G = Rn , H = {0}, X = Rn . The irreducible
unitary representations of G are all 1-dimensional and given by πξ : G × C → C,
(x, z) 
→ e−ξ(x)z, with ξ ∈ iRn∗ = i(Rn)∗.

Fix a choice of Lebesgue measure dx on Rn . Then there is a Fourier transform
f 
→ f̂ given by

f̂ (ξ) =
∫

Rn
f (x) eξ(x) dx ,

for functions f in C∞(Rn) with sufficiently rapid decay at infinity. Let L be the
natural unitary representation of G on L2(Rn) given by La f (x) = f (−a+ x). Then
the Fourier transform has the intertwining property

(La f )∧(ξ) = πξ (a) f̂ (ξ) (ξ ∈ iRn∗, a ∈ Rn) .

The Plancherel theorem asserts that there exists a (unique) normalization dξ of
Lebesgue measure on i(Rn)∗ � Ĝ such that f 
→ f̂ extends to an isometry

L2(Rn, dx) � L2(iRn∗, dξ) .

In particular, the inverse of the Fourier transform is given by its adjoint J . In view
of the fact that the Fourier transform is a continuous linear map from the Schwartz
space S(Rn) to the Schwartz space S(iRn∗) it readily follows that

J ϕ(x) =
∫

i(Rn)∗
ϕ(ξ) eξ(x) dξ , (2.13)

for ϕ ∈ S(i(Rn)∗). The identity J ◦ F = I combined with (2.13) leads to the
inversion formula

f (x) =
∫

i(Rn)∗
f̂ (ξ) eξ(x) dξ , (x ∈ Rn) ,

for f ∈ S(Rn). It exhibits each Schwartz function f as a superposition of the func-
tions fξ : x 
→ f̂ (ξ)eξ , for ξ ∈ iRn∗. However, none of the components fξ is
contained in L2(Rn). For each ξ , let Hξ be the one-dimensional linear span of the
function eξ in C∞(Rn). Then Hξ is an invariant subspace for the left regular repre-
sentation of G in C∞(Rn). The restriction of the left regular representation to Hξ

is equivalent to πξ . Thus, the Plancherel decomposition for the Euclidean Fourier
transform yields a decomposition of L into irreducible unitary representations that
may be realized on invariant subspaces Hξ of C∞(RN ).

For a general reductive symmetric space X = G/H of the noncompact type there
exist analogues of the components fξ ∈ Hξ mentioned above, with ξ ranging over
the irreducible unitary representations of G. However, due to the fact that these repre-
sentations generally are infinite dimensional, we shall only require that the so-called
subspaces of smooth vectors of Hξ are realized as invariant subspaces of C∞(X).
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The Abstract Plancherel Theorem Let X = G/H be a reductive symmetric space
of the Harish-Chandra class and let dx be a choice of invariant measure on X :=
G/H . In this subsection we shall give a naive description of the ‘abstract’ Plancherel
theorem.

We begin by observing that in the Riemannian case, with H = K a maximal
compact subgroup, the Plancherel decomposition for G/K can be derived from the
similar decomposition for G, since L2(G/K ) may be identified with the space of
right K -invariant functions in L2(G). Accordingly, the irreducible unitary represen-
tations entering the decomposition of L2(G/K ) must possess a K -fixed vector. Thus,
in this case the situation is similar to that of the compact symmetric spaces.

In the general situation, where H is noncompact, such a simple relation between
the Plancherel decompositions for G and G/H does not exist. Nevertheless, H -fixed
vectors do play an important role. They do not exist as vectors in Hilbert space, but
rather as distribution, or generalized vectors.

Let π be a continuous representation of G in a Hilbert space H. A vector v ∈ H
is called smooth if the map G → H, x 
→ π(x)v is C∞. The space of smooth vectors
is denoted by H∞. It is a natural representation space for G and g, hence for U (g),
the universal enveloping algebra of gC. The space H∞ is equipped with a Fréchet
topology by means of the seminorms

‖ · ‖U : v 
→ ‖Uv‖H , (U ∈ U (g)) .

The continuous linear dual of the conjugate Fréchet space H∞ is denoted by
H−∞. This space, called the space of generalized vectors of H, is equipped with the
strong dual topology. It naturally carries the structure of a G- and a g-module. Let
〈 · , · 〉 denote the inner product of H. Then via the map v 
→ 〈v, · 〉|H∞ we obtain a
continuous linear embedding

H ↪→ H−∞ ,

via which we shall identify elements. If π is unitary, this embedding is equivariant.
Finally, for v ∈ H∞ and ξ ∈ H−∞ we agree to write

〈ξ, v〉 := ξ(v) and 〈v, ξ〉 = 〈ξ, v〉.
Then 〈 · , · 〉 : H−∞ ×H∞ → C is a continuous sesquilinear pairing which is anti-
linear in the second variable.

Let (π,H) be a unitary representation of G. We denote by (H−∞)H the space
of H -fixed generalized vectors for π . Given such a vector η we define the map mη :
H∞ → C∞(G/H) by

mη(v)(x) = 〈v, π(x)η〉,
for v ∈ H∞ and x ∈ G/H . The map mη belongs to the space HomG(H∞,C∞(X))

of G-equivariant continuous linear maps H∞ → C∞(X). If π is irreducible and
η �= 0, then mη is an embedding.

Lemma 2.1 Let (π,H) be an irreducible unitary representation of G. Then the map
η 
→ mη defines a linear isomorphism



14 E. P. van den Ban

(H−∞)H �−→ HomG(H∞,C∞(X)).

Proof. If T ∈ HomG(H∞,C∞(X)), we define ηT ∈ H−∞ by ηT (v) = (T v)(e).
Then by equivariance of T it follows that, for h ∈ H ,

(π(h)ηT )(v) = ηT (π(h)
−1v) = T (π(h)−1v)(e) = (T v)(h H) = ηT (v).

Hence, ηT is H -invariant and we see that T 
→ ηT is a linear map from the space
HomG(V∞,C∞(X)) to (H−∞)H . We will show that this map is a two-sided inverse
for the map η 
→ mη. If T = mη, one readily verifies that η = ηT . Conversely, let
η = ηT . Then by equivariance of T we find, for v ∈ H∞ and g ∈ G, that

mη(v)(gH) = 〈v, π(g)η〉 = 〈π(g)−1v, η〉 = T (π(g)−1v)(e) = T (v)(gH),

whence mη = T . �
Let Ĝ denote the set of equivalence classes of irreducible unitary representations

of G. For each π ∈ Ĝ we assume Hπ to be a Hilbert space in which π is unitarily
realized.

Lemma 2.2 Let π ∈ Ĝ. Then dimC(H−∞
π )H < ∞.

Proof. See [3], Lemma 3.3. The idea is to select a nontrivial vector v ∈ Hπ that
behaves finitely under the action of a suitable maximal compact subgroup. The map
η 
→ mη(v) maps the conjugate space of (H−∞

π )H injectively and linearly into a
space of functions on X that satisfy a certain system of differential equations. The
solution space of the system is seen to be finite dimensional by a method that goes
back to Harish-Chandra. �

In view of the two preceding lemmas, it is reasonable to define, for π ∈ Ĝ, a
space of smooth functions on X by

C∞(X)π := Mπ (H∞
π ⊗ (H−∞

π )H ) , (2.14)

where Mπ is the matrix coefficient map determined by

Mπ (v ⊗ η)(x) := mη(v)(x) = 〈v, π(x)η〉.

The space C∞(X)π is called the space of smooth functions of type π . It is the ap-
propriate generalization of the space L2(X)δ in (2.8).

We can now describe our goal of obtaining a Plancherel decomposition for G/H .
Let

Ĝ H := {π ∈ Ĝ | (H−∞
π )

H �= 0} .
We wish to specify a locally compact Hausdorff topology on (a subset of) Ĝ H , and
a Radon measure dµ on (that part of) Ĝ H together with continuous G-equivariant
linear operators C∞

c (G/H) → C∞(G/H)π , f 
→ fπ , for π ∈ Ĝ H , such that
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f =
∫

Ĝ H

fπ dµ(π) . (2.15)

The integral should converge as an integral with values in the Fréchet space C∞(X).
It amounts to the decomposition part of the Plancherel theorem. To formulate the
unitary nature of the decomposition, we define the Fourier transform ( f̂ (π) | π ∈
Ĝ H ) of f by

f̂ (π) ∈ H∞
π ⊗ (H−∞

π )
H
, Mπ ( f̂ (π)) = fπ , (2.16)

for π ∈ Ĝ H . Since Mπ is a G-equivariant embedding, the map f 
→ f̂ (π) inter-
twines the G-representations L and π ⊗ 1.

In addition to (2.15) we now require that f 
→ f̂ be an isometry in the follow-
ing sense. For each π ∈ Ĝ H there should exist a linear subspace Vπ ⊂ (H−∞

π )H ,
equipped with a positive definite inner product, such that f̂ (π) ∈ Hπ ⊗ Vπ for all
f ∈ C∞

c (X) and π ∈ Ĝ H , and such that

‖ f ‖2
L2(X)

=
∫

Ĝ H

‖ f̂ (π)‖2 dµ(π) . (2.17)

Finally, the image of C∞
c (X) under f 
→ f̂ should be a dense subspace H0 of the

Hilbert space H consisting of all families (Tπ ∈ Hπ ⊗ Vπ | π ∈ Ĝ H ) that are
measurable in a suitable sense and satisfy

∫
Ĝ H

‖Tπ‖2 dµ(π) < ∞.

By (2.15) and (2.16), the inverse operator J : H → L2(X) is given by

J T =
∫

Ĝ H

Mπ (Tπ ) dµ(π)

for T ∈ H0. Moreover, by unitarity of the Fourier transform it must be the adjoint of
f 
→ f̂ . Thus, for f ∈ C∞

c (X) we should have∫
Ĝ H

〈 f, Mπ (Tπ )〉L2(X) dµ(π) =
∫

Ĝ H

〈 f̂ (π), Tπ 〉 dµ(π) .

This leads to the insight that the Fourier transform should be given by

〈 f̂ (π), Tπ 〉 = 〈 f, Mπ (Tπ )〉L2(X) ,

for a given π ∈ Ĝ H and all Tπ ∈ Hπ ⊗ Vπ . If Tπ = v ⊗ η, then the right-hand side
becomes ∫

X
f (x) 〈v, π(x)η〉 dx = 〈π( f )η, v〉 ,

where we have used the notation

π( f )η =
∫

G/H
f (x)π(x)η dx,

for η ∈ (H−∞
π )H and f ∈ C∞

c (G/H), although strictly speaking this notation is in
conflict with (2.3). Note that π( f )η is a smooth vector in Hπ .
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In view of the identification Hπ ⊗ Vπ � Hom(Vπ ,Hπ ), it follows from the
above that the Fourier transform f̂ (π) of a function f ∈ C∞

c (X) is given by

f̂ (π) = π( f )|Vπ
=
∫

G/H
f (x)π(x)|Vπ

dx .

The Discrete Series An irreducible unitary representation π of G is said to belong
to the discrete series of X = G/H if it can be realized on a closed subspace of
L2(X), i.e., if

HomG(Hπ , L2(X)) �= 0 . (2.18)

By equivariance, an element T from the space on the left-hand side of the above in-
equality restricts to a continuous linear G-equivariant map from H∞

π to L2(X)∞. By
the local Sobolev inequalities it follows that the latter space is contained in C∞(X).
By density of H∞

π in Hπ it thus follows that restriction to the space of smooth vec-
tors induces an embedding from the space HomG(Hπ , L2(X)) onto a subspace of
HomG(H∞

π ,C∞(X)). Via the isomorphism of Lemma 2.1 the latter subspace corre-
sponds to a subspace

(H−∞
π )H

ds ⊂ (H−∞
π )H . (2.19)

The collection of (equivalence classes of) discrete series representations of X is de-
noted by X∧

ds. It is at most countable, since L2(X) is separable.
It follows from these definitions that the restriction of the map Mπ to H∞

π ⊗
(H−∞

π )H
ds has a unique extension to a continuous linear map Hπ ⊗ (H−∞

π )H
ds →

L2(X). In accordance with (2.14), we define, for π ∈ X∧
ds,

L2(G/H)π := Mπ

(
Hπ ⊗ (H−∞

π )
H

ds

)
.

In view of Lemma 2.2 this space equals a finite direct sum of copies of π , hence is
closed. Its elements are called the square integrable functions of discrete series type
π . Alternatively, such a function can be characterized by the condition that its closed
G-span in L2(X) is a finite direct sum of copies of π .

Let Pπ denote the orthogonal projection L2(G/H) → L2(G/H)π . If π ′ is a
second representation of the discrete series, not equivalent to π , then the restriction of
Pπ to L2(G/H)π ′ is a continuous linear intertwining operator from a finite multiple
of π ′ to a finite multiple of π , hence must be zero. It follows that

π �∼ π ′ �⇒ L2(G/H)π ⊥ L2(G/H)π ′ .

The discrete part of L2(G/H) is defined to be the closed G-invariant subspace

L2
d(G/H) := cl

(
⊕π∈X∧

ds
L2(G/H)π

)
. (2.20)
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In the complementary part L2
d(G/H)⊥, the discrete series will occur with dµ-

measure 0 so we may take

Vπ := (H−∞
π )H

ds . (2.21)

The map

Mπ : Hπ ⊗ Vπ → L2(G/H)π , (2.22)

is a continuous linear bijection, intertwining the representations π⊗1 and L|L2(G/H)π
.

It is readily seen that Vπ carries a unique finite-dimensional Hilbert structure such
that Mπ is an isometry.

Invariant Differential Operators In the process of finding the Plancherel formula,
the interaction with invariant differential operators on X = G/H will play an essen-
tial role.

Definition 2.3 An invariant differential operator on X is a linear partial differential
operator D with C∞-coefficients that commutes with the left action of G on C∞(X),
i.e.,

Lg D f = DLg f,

for all f ∈ C∞(X) and g ∈ G. The algebra of these operators is denoted by D(G/H)

or D(X).

If D ∈ D(X), we define its formal adjoint to be the operator D∗ ∈ D(X) given
by the formula ∫

X
D∗ f (x)g(x) dx =

∫
X

f (x)Dg(x) dx , (2.23)

for f, g ∈ C∞
c (X). Moreover, the conjugate of D is defined by the formula D̄ f =

D f̄ and the transpose by Dt = D̄∗.
An operator D ∈ D(X) with D = D∗ is called formally selfadjoint. The follow-

ing result is due to [3].

Theorem 2.4 Let D ∈ D(X) be formally selfadjoint. Then D, viewed as an opera-
tor in L2(X) with domain C∞

c (X), is essentially selfadjoint, i.e., it has a symmetric
closure.

It follows from the above theorem that every formally selfadjoint operator D ∈
D(X) allows a spectral decomposition that commutes with the unitary action of G on
L2(X). Let UD be the unitary group with infinitesimal generator i D; then G and UD

commute. Applying the general representation theory of locally compact groups to
G ×UD one can show that there must be a disintegration of L over which the action
of D diagonalizes.
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Let us see what this means in terms of the decomposition (2.15). If u ∈ U (g)H ,
then Ru : C∞(G) → C∞(G) leaves the subspace C∞(G)H of right-H -invariant
functions invariant. Via the identification C∞(G)H � C∞(X), we may view Ru as
a smooth differential operator on X which obviously commutes with the G-action.
Hence u 
→ Ru defines an algebra homomorphism U (g)H → D(X).

Lemma 2.5 The map u 
→ Ru, U (g)H → D(X) is a surjective homomorphism of
algebras. Its kernel equals U (g)H ∩ U (g)h.

Proof. See [82], Prop. 4.1. �
We denote the induced isomorphism by

r : U (g)H/U (g)H ∩ U (g)h
�−→ D(X) . (2.24)

In the next section we will use this isomorphism to show that D(X) is a polynomial
algebra, as in the Riemannian case. In particular, D(X) is commutative.

Let π be a unitary representation of G. Then the action of U (g) on H∞
π naturally

extends to an action on H−∞
π . Moreover, U (g)H preserves the subspace (H−∞

π )H .
This induces the structure of a U (g)H/U (g)H ∩U (g)h-module on (H−∞

π )H . Via the
isomorphism r we may thus view (H−∞

π )H as a D(X)-module. Finally, the conjugate

space (H−∞
π )H is a D(X)-module for the multiplication map (D, η) 
→ D̄η.

The following result follows from the definitions given.

Lemma 2.6 Let π ∈ Ĝ H . Then, for all D ∈ D(X),

D ◦ Mπ = Mπ ◦ (I ⊗ D̄). (2.25)

By the discussion leading up to (2.16), we expect the subspaces Vπ ⊂ (H−∞
π )H

to be D(X)-invariant. Moreover, by Theorem 2.4 and commutativity of D(X), we
expect the action of D(X) on Vπ to allow a simultaneous diagonalization.

Example 2.7 Let X = �G with �G a Lie group, viewed as a symmetric space for
the left times right action of G = �G × �G. Then D(X) equals the algebra of bi-
invariant differential operators on �G. Using the canonical identification of U (�g)
with the left-invariant differential operators on �G, we see that D(X) � U (g)

�G . If G
is a real reductive group of the Harish-Chandra class, then the latter algebra equals
the center of the universal algebra. We recall that in this setting Ĝ H consists of the
representations of the form π⊗π∗, with π ∈ �Ĝ. These representations are naturally
realized in Eπ = End(Hπ )HS. Moreover, (E−∞

π )H = CIHπ
and the action of D(X)

on this space is given by the infinitesimal character of π .

For a representation π from the discrete series of X it can be shown a priori that
the algebra D(X) has a simultaneous diagonalization on the subspace Vπ given by
(2.21). In fact, from Theorem 2.4 it can be deduced that each formally selfadjoint
operator from D(X) leaves the space L2(X)π invariant and admits a simultaeous di-
agonalization on it; see [3] for details. Since D(X) is a commutative algebra, spanned
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by its formally selfadjoint operators, it follows that D(X) leaves L2(X)π invariant
and admits a simultaneous diagonalization on it. Using (2.22) and (2.25) we can
now deduce that D(X) leaves the subspace Vπ := (H−∞

π )H
ds of (H−∞

π )H invariant.
Moreover, the following result is valid.

Lemma 2.8 Let π be a representation from the discrete series of X. Then the action
of D(X) on Vπ admits a simultaneous diagonalization.

3 Basic Structure Theory

A Suitable Cartan Involution From now on we will always assume that G is a real
reductive group of the Harish-Chandra class, see Section 15. Moreover, we assume
that σ is an involution of G and that H is an open subgroup of Gσ ; thus,

(Gσ )e < H < Gσ . (3.1)

Lemma 3.1 There exists a Cartan involution θ of G that commutes with σ , i.e.,

σ ◦ θ = θ ◦ σ. (3.2)

Proof. For G connected semisimple this result can be found in M. Berger’s paper
[24], where also the classification of all semisimple symmetric spaces is obtained.
We refer to [83], Prop. 7.1.1, for details. For G of the Harish-Chandra class one
may proceed as follows. We refer to the appendix for unspecified notation. Being an
involution, σ leaves the semisimple part g1 and the center c of g invariant. On the
level of the group, σ preserves the maximal compact subgroup T of Ce. Hence σ

preserves t and since σ 2 = I we may select a σ -invariant complementary subspace
v of t in c. It follows that σ(V ) = V . By the result for the semisimple case, G1 has a
Cartan involution θ1 commuting with σ |G1 . We may extend θ1 to a Cartan involution
θ of G in the manner explained in the appendix. It is readily verified that θ commutes
with σ . �

From now on we assume θ to be as in (3.2). Then the associated maximal com-
pact subgroup K = Gθ of G is σ -stable. The involution θ determines the Cartan
decomposition

G = K exp p . (3.3)

Here p is the −1 eigenspace of θ in g and the map (k,X) 
→ k exp X is an analytic
diffeomorphism from K × p onto G. By (3.2), both K and p are invariant under σ ,
hence from the uniqueness of the Cartan decomposition it follows that

Gσ = (K ∩ Gσ ) exp(p ∩ gσ ) .

This in turn implies that (Gσ )e = (K ∩ Gσ )e exp(p ∩ gσ ). By looking at tangent
spaces, we see that (K ∩ (Gσ )e) exp(p ∩ gσ ) is an open subgroup of Gσ . Hence,
(K ∩ Gσ )e = K ∩ (Gσ )e. In view of (3.1) we may now conclude that
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H = (H ∩ K ) exp(h ∩ p) . (3.4)

In particular, it follows that H is θ -stable.
Since σ and θ commute, it follows that g admits the following joint eigenspace

decomposition for σ and θ :

g = k ∩ q ⊕ k ∩ h ⊕ p ∩ q ⊕ p ∩ h . (3.5)

From the fact that σ and θ commute, it also follows that the composition σθ is
an involution of G, which commutes with θ . Let

g = g+ ⊕ g− (3.6)

be the associated decomposition of g in +1 and a −1 eigenspaces, respectively. One
readily sees that g+ = k∩h⊕p∩q and g− = k∩q⊕p∩h. Since K ∩ H normalizes
p ∩ q it follows by application of the Cartan decomposition that

G+ := (K ∩ H) exp(p ∩ q), (3.7)

is an open subgroup of Gσθ , hence a reductive group with the Cartan decomposition
given by (3.7).

Lemma 3.2 The map (k,X, Y ) 
→ k exp X exp Y is a diffeomorphism from K ×(p∩
q)× (p ∩ h) onto G. Accordingly,

G = K exp(p ∩ q) exp(p ∩ h).

Proof. This result is due to G. Mostow, [73]. For details we refer the reader to [44],
Thm. 4.1, [83], Prop. 7.1.2, or [82], Prop. 2.2. �

For any given result for reductive symmetric spaces, it is good practice to check
what it means for the Riemannian case, which arises for σ = θ . In that case the
above lemma gives the usual Cartan decomposition, since p ∩ q = p and p ∩ h = 0.

The above lemma has the following immediate corollary.

Corollary 3.3 The map (k, X) 
→ k exp X H is a submersion from K × (p∩ q) onto
G/H . It factors to a diffeomorphism

K ×K∩H (p ∩ q) � G/H , (3.8)

exhibiting G/H as a K -homogeneous vector bundle over K/K ∩ H, with fiber p∩q.

Example 3.4 (The real hyperbolic space) Here X = Xp,q � G/H , with G =
SOe(p, q) and H = SOe(p − 1, q); see Example 1.3. The Cartan involution θ :
A 
→ (At )−1 commutes with σ . Thus, K = SO (p)× SO (q).

In the notation of Example 1.3, let J : Rn = Rp × Rq → Rn be defined by
J (x ′, x ′′) = (−x ′, x ′′). Then the inner product β is given in terms of the standard
inner product of Rn by the formula β(x, y) = (J x, y). From this it follows that the
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Lie algebra so(p, q) consists of the real n × n matrices A satisfying At = −J AJ .
Thus, so(p, q) consists of matrices of the form(

B Ct

C D

)
,

with B an antisymmetric real p × p matrix, D an antisymmetric real q × q matrix,
and with C a real p × q matrix. Moreover, the involution σ of so(p, q) is given by
A 
→ S AS, and a commuting Cartan involution is given by A 
→ −At . It follows
that the decomposition (3.5) is indicated by the following scheme:

1 p − 1 q
1

p − 1
q

⎛⎝ 0 k ∩ q p ∩ q
k ∩ q k ∩ h p ∩ h
p ∩ q p ∩ h k ∩ h

⎞⎠ ,

which shows where the nonzero entries of the matrices in the mentioned intersections
are located.

In the geometric realization of Xp,q the map (3.8) means the following:

K/K ∩ H � K · e1 = S p−1 × {0} ,

where S p−1 is the unit sphere in Rp. The fiber of the vector bundle (3.8) over e1
corresponds to exp(p ∩ q) · e1; it is given by the equations

x2 = · · · = x p = 0, x1 =
√

1 + x2
p+1 + · · · + x2

n .

The projection p : Rp × Rq → Rq restricts to a diffeomorphism of this fiber onto
Rq . The other fibers of the vector bundle are readily obtained by applying the action
of SO (p) × {I }, since K = SO (p) × SO (q) and {I } × SO (q) stabilizes the fiber
over e1 (see Fig. 3).

The Polar Decomposition We fix a maximal abelian subspace aq of p ∩ q. From
(3.7) we see that any other choice of aq is conjugate to the present one by an element
of (K ∩ H)e. The dimension of aq is called the σ -split rank of G, or the split rank of
the symmetric space X. The following lemma specializes to a well-known result in
the Riemannian case with σ = θ , where aq is a maximal abelian subspace of p.

Lemma 3.5 The nonzero weights of aq in g form a possibly nonreduced root system,
denoted �(g, aq) = �.

The natural map NK (aq) → GL(aq) factors to an isomorphism from the quotient
group NK (aq)/Z K (aq) onto the reflection group W of �.

Proof. The assertion that � is a root system is due to [80]. For the remaining asser-
tions, details can be found in [5], Lemma 1.2. �
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Figure 3. Xp,q as an Rq -bundle over S p−1

Note that � need not span the dual of aq, since g may have a center. In fact, the
intersection a�q of all root hyperplanes in aq is easily seen to be equal to center(g)∩
p ∩ q.

We define the subgroup WK∩H of W to be the natural image of the subgroup
NK∩H (aq) of NK (aq).

From the Cartan decomposition (3.3) it follows that exp is a diffeomorphism
from aq onto a closed abelian subgroup Aq of G. Via this diffeomorphism W acts on
Aq. In the Riemannian case (σ = θ) we have the G = K Aq K decomposition, where
the Aq-part is uniquely determined modulo W . The generalization of this result to
the present context is as follows.

We define Areg
q = exp(areg

q ), where a
reg
q is the complement of the union of the

root hyperplanes kerα, α ∈ �. Alternatively, Areg
q is the subset of points in Aq not

fixed by any element from W \ {1}. The following result can be found in [44], Thm.
4.1.

Lemma 3.6 (Polar decomposition) The group G decomposes as G = K Aq H . If
x ∈ G, then x ∈ K aH for an element a ∈ Aq that is uniquely determined modulo
WK∩H . Finally,

X+ := K Areg
q H ,

viewed as a subset of X, is open dense.

Proof. We consider the reductive group G+ defined by (3.7). Now aq is maximal
abelian in p ∩ q, and since (3.7) is a Cartan decomposition it follows that
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G+ = (K ∩ H)Aq(K ∩ H) ,

where the Aq-part is unique modulo WK∩H . We finish the proof by combining this
with the decomposition of Lemma 3.2 and (3.4). �

In the following we will always assume that W ⊂ NK (aq) is a set of representa-
tives for W/WK∩H . By this we mean that the natural map

W �−→ W/WK∩H (3.9)

is a bijection.

Corollary 3.7 Let A+
q be a chamber in Areg

q . Then

X+ = ∪v∈W K A+
q vH (disjoint union). (3.10)

Moreover, if x ∈ X+, then x ∈ K avH for uniquely determined v ∈ W and a ∈ A+
q .

Proof. Since W(K ∩ H) contains a full set of representatives for W , the equality
(3.10) follows from the polar decomposition of Lemma 3.6.

To establish uniqueness, let v1, v2 ∈ W and assume that K a1v1 H = K a2v2 H
for a1, a2 ∈ A+

q . Then Kv−1
1 a1v1 H = Kv−1

2 a2v2 H , hence v−1
1 a1v1 and v−1

2 a2v2
are WK∩H -conjugate by Lemma 3.6. This implies that v1 and v2 determine the same
coset in W/WK∩H , hence are equal. �

Example 3.8 Let X = Xp,q be a real hyperbolic space. Let

Y =

⎛⎜⎜⎜⎜⎜⎝
0 · · · 0 1
0 0
... 0

...

0
1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ .

Then aq = RY is maximal abelian in p ∩ q. One readily checks that

at = exp tY =

⎛⎜⎜⎜⎜⎜⎝
cosh t 0 · · · 0 sinh t

0 0
... I

...

0 0
sinh t 0 · · · 0 cosh t

⎞⎟⎟⎟⎟⎟⎠
from which it follows that

Aqe1 = {cosh t e1 + sinh t en
∣∣ t ∈ R

}
=
{

x ∈ Rn
∣∣ xi = 0 , 1 < i < n , x2

1 − x2
n = 1
}
.
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It is now readily seen that K Aqe1 = Xp,q , and we conclude that G = SOe(p, q)
acts transitively on Xp,q . We also see that G = K Aq H . It is now straightforward to
verify the statements of Example 3.4.

In the present situation the root system is given by � = {±α}, where α(Y ) = 1.
Thus, W = {± I }. Moreover, there is a significant difference between the cases
q = 1 and q > 1. If q = 1, then WK∩H = {I }, but if q > 1, then WK∩H = W .
See [82], Example 2.2, for details. The difference is reflected by the fact that X+ =
Xp,q \ (Rp × {0}) consists of two connected components for q = 1 and of one
connected component for q > 1.

The decomposition (3.10) gives rise to an integral decomposition for X. If α ∈
� = �(g, aq), let gα be the associated root space in g. Since σ ◦ θ = I on aq, the
involution σ ◦ θ leaves each root space gα , for α ∈ �, invariant. It follows that the
root space decomposes compatibly with (3.6),

gα = (gα ∩ g+)⊕ (gα ∩ g−) .

Accordingly, mα := dim gα = m+
α + m−

α , where

m±
α = dim(gα ∩ g±) .

We will also need the following notation. Recall that exp : aq → Aq is a diffeomor-
phism. We denote its inverse by log. If µ ∈ a∗qC, we put

aµ = eµ(log a) (a ∈ Aq) . (3.11)

In other words, (exp X)µ = eµ(X), for X ∈ aq.

Theorem 3.9 Let dx be a choice of invariant measure on X and let dk be normalized
Haar measure. There exists a unique choice of Haar measure da on Aq such that,
for f ∈ L1(X), ∫

X
f (x)dx =

∑
v∈W

∫
K

∫
A+

q

f (kavH)J (a) da dk .

Here J (a) = ∏α∈�+(aα − a−α)m+
α (aα + a−α)m−

α with �+ the positive system de-
termined by a+q .

The computation of the Jacobian is due to M. Flensted-Jensen, [45], Thm. 2.6.,
Eq. (2.14). Note that in the above formula, A+

q is a chamber for �, whereas in the
mentioned result of [45], the integration is reduced to a bigger chamber in Aq for the
smaller root system �(g+, aq). In particular, no summation over W is needed. The
computation of the Jacobian can also be found in [83], proof of Thm. 8.1.1.

Example 3.10 For the example Xp,q the above result is treated in detail in [82],
Example 2.3.
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4 Invariant Differential Operators

A Dual Riemannian Space In this section we will explain the structure of the
algebra D(X) of invariant differential operators on X. The key idea is to relate this
algebra to the algebra of invariant differential operators on a suitable dual Rieman-
nian symmetric space. The structure of the latter algebra is well known.

If v is a finite-dimensional real linear space, we agree to denote the symmetric
algebra of its complexification by S(v). If l is a Lie algebra, we denote by U (l) the
universal enveloping algebra of its complexification.

Let g+ and g− be as in (3.6). Then

g+ = k ∩ h ⊕ p ∩ q and g− = k ∩ q ⊕ p ∩ h .

One readily checks that g+ is a subalgebra and that [g+, g−] ⊂ g−, hence

gd := g+ ⊕ ig−
is a real form of the complexification gC of g. A nice feature of this dual real form is
that the roles of θ and σ become interchanged. More precisely, let θC and σC be the
complex linear extensions of θ and σ to gC, and define

θd = σC|gd , σ d = θC|gd .

Then ker(θd − I ) = (k ∩ h) ⊕ i(p ∩ h). It is well known that k ⊕ ip is a compact
real form of gC. Hence, θd is a Cartan involution for the dual real form gd , which
explains the notation. Clearly, σ d is an involution of gd that commutes with θd .

Fix a complex linear algebraic group GC with algebra gC and let Gd , K d be the
analytic subgroups with Lie algebras gd and

kd := ker(θd − I ) = hC ∩ gd .

Let HC be the analytic subgroup with algebra hC. Then Xd = Gd/K d is a Rieman-
nian real form of the complex symmetric space GC/HC.

Example 4.1 Let X = Xp,q = SOe(p, q)/SOe(p − 1, q). As a complexification
of X we may take SO (n)C/SO (n − 1)C, where n = p + q . Moreover, the dual
Riemannian form becomes Xd = SOe(n − 1, 1)/SOe(n − 2, 1).

Lemma 4.2 There is a natural isomorphism

D(X) � D(Xd). (4.1)

Proof. If H is connected, the proof is straightforward, involving the isomorphism
(2.24) for both X and Xd ,

D(X) � U (g)H/U (g)H ∩ U (g)h

= U (g)h/U (g)h ∩ U (g)h

= U (gd)k
d /

U (gd)k
d ∩ U (gd)kd � D(Xd) .

If H is nonconnected, the second identity is not completely obvious, but can be
proved, using information on the structure of H/He. See [6], Lemma 2.1, for details.

�
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Example 4.3 We consider the real hyperbolic space X = Xp,q . In Example 4.1
we saw that the dual space Xd equals the Riemannian hyperbolic space SOe(n −
1, 1)/SOe(n − 2, 1), where n = p + q . Now D(Xd) is the polynomial algebra gen-
erated by the Laplace-Beltrami operator � on Xd . Under the isomorphism (4.1), �

corresponds to the pseudo-Laplacian �p,q on Xp,q . Consequently, D(X) is the poly-
nomial algebra generated by �p,q .

From the theory of Riemannian symmetric spaces, we recall the existence of a
canonical isomorphism

γ d : D(Xd)
�−→ I (ad

p),

where ad
p is maximal abelian in p, and where I (ad

p) is the collection of invariants in
S(ad

p) for the action of the reflection group W (gd , ad
p) of the root system of ad

p in gd .
In particular, it follows that D(Xd) is a polynomial algebra of rank dim ad

p. Combined
with Lemma 4.2, this leads to the following.

Corollary 4.4 D(X) is a polynomial algebra of rank dim ad
p. In particular it is com-

mutative.

Corollary 4.5 The characters of the algebra D(X) are of the form χλ : D 
→
γ (D, λ), with λ ∈ ad∗

pC. Two characters χλ and χµ are equal if and only if λ and

µ are conjugate under W (g, ad
p).

Cartan Subspaces We shall now discuss, for the symmetric pair (g, h), the ana-
logue of the notion of a Cartan subalgebra for a real reductive Lie algebra.

Definition 4.6 By a Cartan subspace of q we mean a subspace b ⊂ q that is maximal
subject to the following two conditions:

(a) b is abelian;
(b) b consists of semisimple elements.

By using the method of complexification of the previous subsection, it can be
shown that dim b is independent of b, though in general there are several, but finitely
many, H -conjugacy classes of Cartan subspaces. The number dim b is called the
rank of X. It can be shown that every Cartan subspace is He-conjugate to one that is
θ -stable, i.e., invariant under the involution θ .

Example 4.7 In the case of the group, see Example 1.2,

q = {(X,−X) | X ∈ �g}.
For each Cartan subalgebra �j ⊂ �g, the space b�j := {(X,−X) | X ∈ �j} is a
Cartan subspace of q. Moreover, the map �j 
→ b�j establishes a bijection between
the collection of all Cartan subalgebras of �g onto the collection of Cartan subspaces
of q; it induces a bijection from the finite set of �G-conjugacy classes of Cartan
subalgebras of g onto the set of H -conjugacy classes of Cartan subspaces of q.
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A particular Cartan subspace of q is obtained as follows. Let

aq ⊂ p ∩ q (4.2)

be a maximal abelian subspace. Being a subset of p, the space aq consists of semi-
simple elements. Let m1 be the centralizer of aq in g; then m1∩q ⊂ (m1∩k∩q)⊕aq.
Let t ⊂ m1∩k∩q be maximal abelian. Then t consists of semisimple elements, hence
so does

b := t ⊕ aq.

Clearly, b is a θ -stable Cartan subspace of q. We call it maximally split, since g
splits maximally for the action of b by ad. Note that the number dim aq (the rank of
the Riemannian pair (g+, p ∩ q)) is independent of the particular choice of aq. This
number is called the split rank of X or the σ -split rank of G. It can be shown that
every maximally split θ -stable subspace of q is K ∩ He-conjugate to b.

To the θ -stable Cartan subspace b we associate ad
p := b ∩ p ⊕ i(b ∩ k) which

is maximal abelian in pd . Let �(gC, b) be the root system of b in gC, W (b) the
associated Weyl group and I (b) the associated collection of W (b)-invariants in S(b).
Then obviously I (b) = I (ad

p). Let γ : D(X) → I (b) be the map which makes the
following diagram commutative:

D(X)
γ−→ I (b)

� ↓ � ↓ =

D(Xd)
γ d

−→ I (ad
p) .

The vertical isomorphism on the left side of the diagram is the natural isomorphism
indicated in the proof of Lemma 4.2. Since γ d is an isomorphism of algebras, it
follows that γ is an isomorphism as well. The latter is called the Harish-Chandra
isomorphism for D(X) and b. The well-known description of γ d in terms of the uni-
versal enveloping algebra, see, e.g., [63], Ch. II, Thm. 5.17, leads to the following
similar description of γ . The reader may keep in mind that in the Riemannian case,
which arises for σ = θ , the algebra g coincides with its dual form gd and, accord-
ingly, the description of γ given below coincides with that of γ d .

Let �+(gC, b) be a choice of positive roots, and let g+C be the associated sum of
positive root spaces. Then gC = hC⊕bC⊕g+C complexifies the Iwasawa decomposi-
tion gd = kd ⊕ ad

p ⊕ (g+C∩gd) for gd . By application of the Poincaré–Birkhoff–Witt
(or PBW) theorem, we see that the decomposition induces the following decompo-
sition of the universal enveloping algebra:

U (g) = [ g+CU (g)+ U (g)hC ] ⊕ U (b).

Let D ∈ D(X). Then D = Ru for a u ∈ U (g)H . There is a unique u0 ∈ U (b), only
depending on u through its image D, such that

u − u0 ∈ g+CU (g)+ U (g)hC .

The element γ (D) ∈ I (b) is now given by γ (D) = Tρbu0, where ρb = 1
2 trC ad(·)∣∣g+C

and where Tρb denotes the automorphism of S(b) induced by the map x 
→
x + ρb(x), b → S(b).
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5 The Discrete Series

Flensted-Jensen’s Duality The idea of passing to the dual Riemannian form Xd

plays an important role in the theory of the discrete series of X. We shall restrict
ourselves to giving a short account of some of the main ideas involved. For simplicity
of the exposition we make the mild assumption in this section that G is the analytic
subgroup with Lie algebra g of a complex Lie group GC with Lie algebra gC. Let
Gd , K d and Hd be the analytic subgroups of GC with Lie algebras gd , kd and hd ,
respectively. We put Xd = Gd/K d and agree to write C∞(Xd)Hd for the space of
smooth Hd -finite functions on Xd . The following result, due to Flensted-Jensen [45],
establishes an important duality between functions on X and on Xd . We observe that
Aq naturally embeds into each of the spaces X and Xd . Moreover, by Lemma 3.6,

X = K Aq and Xd = Hd Aq. (5.1)

The isomorphism D(X) → D(Xd) of Lemma 4.2 is denoted by D 
→ Dd .

Theorem 5.1 There exists a unique linear map f 
→ f d from C∞(X)K to C∞(Xd)Hd

with the property that, for all f , and all X ∈ U (k) = U (hd),

L X f |Aq = L X f d |Aq ,

where L denotes the infinitesimal left regular representation.
The map f 
→ f d is injective. Moreover, for every f ∈ C∞(X)K ,

(D f )d = Dd f d , (D ∈ D(X)).

Proof. It suffices to prove the result for functions with a fixed K -type. One then
combines the decompositions (5.1) with the fact that each finite-dimensional repre-
sentation of K extends to a holomorphic representation of the analytic group KC

with Lie algebra kC, which has K as a compact real form, and Hd as another real
form. �

We now turn to the application of the above idea to the study of the collection
X∧

ds of discrete series representations for X. Given a continuous representation of G
in a locally convex space V , we denote by VK the set of K -finite vectors in V .

Let π ∈ X∧
ds. Then it follows from Lemma 2.8, combined with the fact that the

map Mπ in (2.22) is bijective, that every function in the space L2(X)π,K decomposes
inside the mentioned space as a finite sum of simultaneous eigenfunctions for D(X).
Thus, a first step towards the classification of the discrete series is the determina-
tion of all eigenfunctions in C∞(X) ∩ L2(X)K for D(X). It can be shown that such
functions automatically belong to L2

d(X).
Let a function f of the mentioned type be given. Thus, f ∈ C∞(X) ∩ L2(X)K

and in the notation of Section 4, there exists a � ∈ b∗C such that

D f = γ (D,�) f (D ∈ D(X)). (5.2)
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Applying Theorem 5.1 we see that the associated dual function f d ∈ C∞Xd)Hd

satisfies the system of differential equations

D f d = γ d(D,�) f d (D ∈ D(Xd)). (5.3)

Moreover, the L2-behavior of f can be formulated in terms of growth conditions of
f d at infinity. Attached to the system (5.3) is a certain Poisson transform Pd , which
we shall briefly describe. Let Gd = K d Ad

pN d be an Iwasawa decomposition, let Md

be the centralizer of Ad
p in K d and let Pd = Md Ad

pN d be the corresponding minimal
parabolic subgroup of Gd . Let ρd ∈ (ad

p)
∗ be defined by

ρd( · ) = 1

2
tr (ad( · )|nd ).

In other words, ρd = 1
2�α dim(gd

α)α, where the summation extends over the ad
p-

roots α in nd .
Let C� denote C equipped with the Ad

p-action determined by −� + ρd . Thus,

a ∈ Ad
p acts on C� by the scalar a−�+ρd

. The action of Ad
p is extended to an action

of Pd on C�, by letting Md and N d act trivially. We now define the G-equivariant
line bundle L� on the flag manifold Gd/Pd by

L� := Gd ×Pd C�.

The space �(L�) of continuous sections of this bundle is naturally identified with
the space of continuous functions f : G → C transforming according to the rule

f (xman) = a�−ρd
f (x),

for all x ∈ Gd and (m, a, n) ∈ Md × Ad
p× N d . The natural action of Gd on sections

defines a continuous representation π� of Gd in �(L�). Let B(L�) denote the space
of hyperfunction sections of the line bundle L�. This space may be identified with
the dual of the locally convex space of analytic sections of the bundle L−�, and thus
is a locally convex space. We define the Poisson transform P� : B(L�) → C∞(Xd)

by the formula

P�ϕ(x̄) =
∫

K d
ϕ(xk) dk, (x ∈ Gd),

where dk denotes normalized Haar measure of K d . From the definition it readily
follows that the Poisson transform intertwines the representation π� with the left
regular representation L . Moreover, it maps into the space E�(Xd) of smooth func-
tions f ∈ C∞(Xd) satisfying the system (5.3).

Let E∗�(Xd) denote the space of functions f ∈ E�(Xd) for which there exist
constants r ∈ R and C > 0 such that

‖ f ‖ := | f (x)| ≤ Cerdist(x,ē) (x ∈ Xd), (5.4)
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where dist(x, ē) denotes the Riemannian distance in Xd between x and the origin
ē = eK d . Note that dist(x, ē) = |X | for X ∈ pd and x = exp X K d .

It is not hard to show that P� maps the space D′(L�) of distribution sections of
L� continuously into the space E∗�(Xd), equipped with the locally convex topology
suggested by the estimates (5.4).

Theorem 5.2 Let Re(�) be dominant with respect to the roots of ad
p in nd . Then the

Poisson transform P�

(a) is a topological linear isomorphism B(L�)
�→ E�(Xd), and

(b) restricts to a topological linear isomorphism D′(L�)
�→ E∗�(Xd).

For Xd of rank one, part (a) of the theorem is due to Helgason [61]. In [62] he
conjectured part (a) to be true in general, and established it on the level of K d -finite
functions. Part (a) was established in generality by M. Kashiwara, A. Kowata, K.
Minemura, K. Okamoto, T. Oshima and T. Tanaka, [65], by means of the microlocal
machinary developed by the school around M. Sato. In particular, this machinary al-
lowed one to define a boundary value inverting the Poisson transform, generalizing
the classical boundary value for harmonic functions on the disk. Part (b) is due to Os-
hima and Sekiguchi [78]. Later, Wallach gave a different proof of (b), [87], based on
the theory of asymptotic behavior of matrix coefficients. Inspired by this work, van
den Ban and Schlichtkrull, [12], gave a proof of (b) via a theory of asymptotic ex-
pansions with distribution coefficients, which allowed them to define a distributional
boundary value inverting the restricted Poisson transform of (b).

The system (5.2) remains unchanged if � is replaced by a conjugate under the
Weyl group W (gd , ad

p). Without loss of generality, Re� may therefore be assumed

to be dominant. It can be shown that for a function f ∈ C∞(X) ∩ L2(X)K satisfy-
ing the system (5.2), the function f d satisfies a growth condition which in particular
implies (5.4). Therefore, for such a function f , the dual function f d may be real-
ized as a Poisson transform of a unique distribution section ϕ ∈ D′(L�), which by
equivariance is Hd -finite.

Theorem 5.3 Assume that rk (G/H) = rk (K/K ∩ H). Then there exist infinitely
many discrete series representations for X.

For the case of the group this result is due to Harish-Chandra [53], [54], who also
established the necessity of the above rank condition, and gave the full classification
of the discrete series via character theory.

The generalization to symmetric spaces is due to Flensted-Jensen [45]. The idea
of his proof is to construct, for infinitely many dominant values of � ∈ (ad

p)
∗, a

nontrivial function f ∈ C∞(X)∩ L2(X)K satisfying (5.2), via its dual f d . The dual
is obtained as a Poisson transform f d = P�(ϕ), with ϕ a distribution section of L�,
with support contained in a closed Hd -orbit on Gd/Pd .
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The Classification of Oshima and Matsuki In [77], Oshima and Matsuki estab-
lished the necessity of the rank condition of Theorem 5.3 for the existence of discrete
series. They used the mentioned theory of boundary values to show that the growth
condition on f d can be translated into a condition on the support of P−1

� ( f d), which
by equivariance is a union of Hd orbits on Gd/Pd . Moreover, this condition can
only be met if the rank condition is fulfilled. This leads to the following.

Theorem 5.4 X∧
ds �= ∅ ⇐⇒ rk (G/H) = rk (K/K ∩ H).

Example 5.5 If rk (G/H) = 1, then clearly the theorem implies that X∧
ds �= ∅. It is

readily seen that the hyperbolic spaces Xp,q , see Example 3.4, have rank 1; therefore,
each of these has infinitely many representations in the discrete series.

In addition, in [77], Oshima and Matsuki proved, under the rank condition, that
a function f ∈ C∞(X) is in L2(X) if and only if its dual f d is the Poisson transform
of a distribution section of L� with support contained in a union of closed Hd -orbits.
Moreover, they obtained the following information about the infinitesimal character
�.

Theorem 5.6 ([77]) Let π ∈ X∧
ds and let b ⊂ q be a θ -stable Cartan subspace.

Then the eigenvalues of the D(X)-module (H−∞
π )H

ds are all of the form

D 
→ γ (D,�) ,

with � ∈ b∗C real and regular, i.e.,

〈�,α〉 ∈ R \ {0}, for all α ∈ �(gC, b).

In addition to this, for G connected semisimple, Oshima and Matsuki gave a list
of representations spanning L2

d(X). For a few of these it remained an open problem
whether they are nonzero or irreducible (a priori they are finite sums of irreducibles).
The irreducibility was settled by D. Vogan, [85]. In [70] Matsuki gave necessary
conditions for nontriviality, which he announced to be sufficient. The final problem
is whether the list contains double occurrences. The answer is believed to be no
under the mentioned assumption on G, implying that for a representation π from the
discrete series, dim(H−∞

π )ds = 1, or equivalently, π occurs with multiplicity one
in the Plancherel formula. This fact has been established by F. Bien [26], except for
spaces that have as a factor one of four exceptional symmetric spaces.

In the proof of the Plancherel theorem that we will describe, we do not need the
full description of X∧

ds. The formulation of the Plancherel theorem is put in a form
that avoids precise description of the discrete series. As a consequence, Theorems
5.4 and 5.6 are sufficient for the proof. At the same time, it should be emphasized
that the mentioned theorems are absolutely indispensable for the proof. This is also
true for Delorme’s proof in [40].
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6 Parabolic Subgroups

The Coxeter Complex In the proof of the Plancherel formula, the asymptotic be-
havior of K -finite eigenfunctions of D(X) plays a crucial role. In view of the polar
decomposition of Lemma 3.6, for a proper description of this behavior it is necessary
to use an appropriate description of asymptotic directions to infinity in Aq � aq. The
description of these directions relies on the following notion of a facet for the root
system �. The collection of facets will turn out to be in one-to-one correspondence
with the collection of σθ -stable parabolic subgroups of G containing Aq.

Definition 6.1 A facet of (aq, �) is defined to be an equivalence class for the equiv-
alence relation ∼ on aq defined by

X ∼ Y ⇔ {α ∈ � | α(X) > 0} = {α ∈ � | α(Y ) > 0} .
The dimension of a facet is defined to be the dimension of its linear span.

Example 6.2 Consider the root system A2 in R2, consisting of the roots ±α,±β

and ±(α+β), where {α, β} is a fundamental system. The 6 open Weyl chambers are
the facets of dimension 2, the 6 open ended halflines that border them (the ‘walls’)
are those of dimension 1. Finally, {0} is the unique facet of dimension 0.

The collection of facets, also called the Coxeter complex of �, is denoted by
P(�). It is equipped with a natural action by the Weyl group W of �. If X ∈ aq, we
denote its class by CX ∈ P(�). For C ∈ P(�), we put

�(C) = {α ∈ � | α > 0 on C} ,
�C = {α ∈ � | α = 0 on C} .

Then

� = −�(C) ∪�C ∪�(C) (disjoint union). (6.1)

Let S be the intersection of the root hyperplanes kerα, α ∈ �C . Then, clearly, the
set D = {X ∈ S | ∀α∈�(C) α(X) > 0} contains C , hence is a nonempty open subset
of S and therefore spans S. On the other hand, from (6.1) it follows that D ∈ P(�).
Hence C = D and we conclude that the linear span of the facet C is given by

span(C) = ∩α∈�C kerα .

We now fix a closed Weyl chamber for �, which we call positive and denote by a+q .
The following result is well known, see, e.g., [29].

Lemma 6.3 Let C ∈ P(�). Then there exists a unique D ∈ P(�) such that

(a) C is W -conjugate to D,
(b) D ⊂ a+q .
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Let �+ be a positive system and let � be the collection of simple roots in �

associated with the chamber ā+q . If F ⊂ �, we put

aFq = ∩α∈F kerα ,

a+Fq = {X ∈ aFq | ∀α ∈ �+ α(X) �= 0 ⇒ α(X) > 0} .
Then a+Fq ∈ P(�). Moreover, the following result is well known, see, e.g., [29].

Lemma 6.4 F 
→ a+Fq is a bijection from the collection of all subsets of � onto the

collection of all facets C ∈ P(�) contained in a+q . Finally, a+q is the disjoint union

of the sets a+Fq, for F ⊂ �.

Definition 6.5 A standard facet (relative to �+) is a facet C satisfying one of the
following equivalent conditions:

(a) C ⊂ a+q ;

(b) C = a+Fq for some F ⊂ �.

To each facet C ∈ P(�) we associate the following subalgebra of g:

pC := g0 ⊕
⊕
α∈�

α|C≥0

gα , (6.2)

where g0 denotes the centralizer of aq. The algebra pC is readily checked to be a
parabolic subalgebra of g, i.e., it is a subalgebra that is its own normalizer in g. The
fact that σθ = I on aq implies that the parabolic subalgebra pC is σθ -stable.

Lemma 6.6 The map C 
→ pC is a bijective correspondence between P(�) and the
set of σθ -stable parabolic subalgebras containing aq.

Proof. The proof is not difficult, see [20], Sect. 2. �

Remark 6.7 If σ = θ , then aq is maximal abelian in p. We write ap = aq in this
case, and Ap = exp ap. In the present setting the above result amounts to the well-
known fact that the map C 
→ pC is a bijective correspondence between the Coxeter
complex P(�) of � = �(g, ap) and the collection of all parabolic subalgebras of g
containing ap.

If r is a parabolic subalgebra of g, then its normalizer R = NG(r) in G is a closed
subgroup with algebra r. Thus, R is a subgroup of G that equals the normalizer of
its Lie algebra. A subgroup with this property is called a parabolic subgroup of G.
Clearly, the map r 
→ NG(r) defines a bijective correspondence between the collec-
tion of all parabolic subalgebras of g and the collection of all parabolic subgroups of
G. If C ∈ P(�), we put PC = NG(pC ).

Corollary 6.8 The map C 
→ PC is a bijective correspondence between P(�) and
the collection Pσ of all parabolic subgroups of G that are σθ -stable and contain Aq.
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Langlands Decomposition If P ∈ Pσ , let C = CP ∈ P(�) be the unique facet
with PC = P . We agree to write

a+Pq := C , �P = �C , �(P) = �(C) . (6.3)

We also agree to write aPq := span(a+Pq); then

aPq = ∩α∈�P kerα ,

a+Pq = {X ∈ aPq | ∀β ∈ �(P) : β(X) > 0} .

Let m1P denote the centralizer of aPq in g. Then

m1P = g0 ⊕
⊕
α∈�P

gα . (6.4)

Moreover, it follows from (6.2) that

Lie(P) = m1P ⊕ nP , where nP = ⊕α∈�(P) gα . (6.5)

It is readily checked that mP is a reductive Lie algebra and that nP is the nilpotent
radical of Lie(P); therefore, the decomposition in (6.5) is a Levi decomposition. In
fact, it is the unique Levi decomposition with a θ -stable Levi component, cf. [84],
Sect. II.6.

Let C ∈ P(�); then −C ∈ P(�) as well. Accordingly, for P ∈ Pσ we define
the opposite parabolic subgroup P̄ by requiring that a+

P̄q
= −a+Pq . The following

lemma is a straightforward consequence of the definitions given above.

Lemma 6.9 Let P ∈ Pσ . Then

(a) P = θ(P) = σ(P);
(b) nP̄ = θnP = σnP ;
(c) m1P̄ = θm1P = σm1P = m1P ,
(d) g = nP̄ ⊕ m1P ⊕ nP .

We define the following subgroups of G:

M1P := ZG(aPq) and NP = exp nP .

Proposition 6.10 Let P ∈ Pσ .

(a) NP is a closed subgroup of G.
(b) M1P is a group of the Harish-Chandra class.
(c) P = M1P NP ; the multiplication map is a diffeomorphism from M1P × NP onto

P .

Proof. See [84], Sect. II.6. �
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As also mentioned in the appendix, assertion (b) of the above proposition is of
particular importance, since it allows induction with respect to dimension within
Harish-Chandra’s class of real reductive groups.

Remark 6.11 If σ = θ , then aq is maximal abelian in p. In the notation of Remark
6.7, let p0 denote the parabolic subalgebra determined by C := a+p , let P0 = PC

denote its normalizer in G and let N0 := NC . We recall that G admits the Iwasawa
decomposition G = N0 ApK , where the natural multiplication map N0 × Ap× K →
G is an analytic diffeomorphism. In particular, it follows that G = P0 K .

Lemma 6.12 Let P ∈ Pσ . Then G = P K . Moreover, the multiplication map in-
duces a diffeomorphim P ×K∩M1P K → G.

Proof. This is a rather straightforward consequence of the Iwasawa decomposition
described in Remark 6.11. See [84], Sect. II.6, for details. �

We can now describe the so-called Langlands decomposition of a parabolic sub-
group P ∈ Pσ . Let us first do this on the level of Lie algebras. Let P ∈ Pσ . Then
m1P is θ -invariant, by Lemma 6.9, hence m1P = (m1P ∩ k)⊕ (m1P ∩ p). We define

aP = center(m1P ) ∩ p .

Clearly, aPq is contained in this space. On the other hand, if X ∈ p ∩ q centralizes
m1P , then X centralizes the maximal abelian subspace aq of p ∩ q, hence belongs to
it. Moreover, in view of (6.4), α(X) = 0 for all α ∈ �P , from which we deduce that
X ∈ aPq. Thus,

aPq = aP ∩ q .

This justifies the notation with subscript q in hindsight. The group

AP := exp aP

is called the split component of P , and APq := exp aPq the σ -split component.
Define mP := (m1P ∩k)⊕([m1P ,m1P ]∩p) . Then mP is a reductive Lie algebra

with center(mP ) ∩ p = 0. Moreover,

m1P = mP ⊕ aP .

It follows that
Lie(P) = mP ⊕ aP ⊕ nP .

This is called the infinitesimal Langlands decomposition. Define MP = (M1P ∩
K ) exp(mP ∩ p) . Then the following result describes the Langlands decomposition
of the parabolic subgroup P .

Lemma 6.13 (Langlands decomposition) Let P ∈ Pσ . Then MP is a group of the
Harish-Chandra class. Moreover,

M1P = MP AP , P = MP AP NP .

The multiplication maps induce diffeomorphisms MP ×AP → M1P and MP ×AP ×
NP → P .
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Proof. For a proof the reader is referred to [84], Sect. II.6. �

Remark 6.14 In his work on the Plancherel decomposition, P. Delorme reserves
the above notation for the so-called σ -Langlands decomposition. More precisely, let
APh = AP ∩ H ; then AP = APh APq. Put MPσ = MP APh. Then

P = MPσ APq NP

is called the σ -Langlands decomposition of the parabolic subgroup. Delorme uses
the notation MP instead of MPσ and AP instead of APq.

7 Parabolically Induced Representations

Induced Representations In this section we assume that G is a real reductive
group of the Harish-Chandra class, and that P ∈ Pσ . We shall describe the process
of inducing representations from P to G, and its relation with function theory on
G/H . It is a good idea to keep in mind that, in particular, the Riemannian case with
σ = θ is covered. In this case σθ = I , so that Pσ consists of all parabolic subgroups
containing Ap = Aq, see Remark 6.7.

Let ξ ∈ M̂P (the unitary dual of MP ) and let Hξ be a Hilbert space in which ξ

is unitarily realized. Let λ belong to a∗PC := HomR(aP ,C), the complexified linear
dual of aP . We define the representation ξ ⊗ λ⊗ 1 of P = MP AP NP in Hξ by

(ξ ⊗ λ⊗ 1)(man) = aλξ(m) ,

for m ∈ MP , a ∈ Ap, n ∈ NP . This indeed defines a representation of P , since MP

centralizes AP , and since M1P = MP AP normalizes NP .
We shall now proceed to define the parabolically induced representation

πP,ξ,λ := indG
P (ξ ⊗ (λ+ ρP )⊗ 1) . (7.1)

Here ρP ∈ a∗P is defined by

ρP (x) = 1

2
tr [ad(x)

∣∣
nP

]

= 1

2

∑
α∈�(P)

dim(gα) α .

The translation over ρP will turn out to be needed to ensure that the representation
πP,ξ,λ is unitary for λ ∈ ia∗Pq. To describe the representation space for πP,ξ,λ we
first define

C(P : ξ : λ)

to be the space of continuous functions f : G → Hξ transforming according to the
rule
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f (man x) = aλ+ρP ξ(m) f (x) , (7.2)

for x ∈ G, m ∈ MP , a ∈ AP , n ∈ NP .
In C(P : ξ : λ), the representation πP,ξ,λ is defined by restricting the right

regular representation, i.e., if f ∈ C(P : ξ : λ) and x ∈ G, then

πP,ξ,λ(x) f (y) = f (yx) , (y ∈ G) .

Our next goal is to extend πP,ξ,λ to a suitable Hilbert space completion of
C(P : ξ : λ). It follows from Lemma 6.12 that a function f in C(P : ξ : λ) is
completely determined by its restriction f

∣∣
K to K . Let C(K : ξ) denote the space of

continuous functions ϕ : K → Hξ transforming according to the rule

ϕ(mk) = ξ(m)ϕ(k) , (7.3)

for k ∈ K and m ∈ K ∩ P = K ∩ MP .

Lemma 7.1 The map f 
→ f
∣∣
K defines a topological linear isomorphism from

C(P : ξ : λ) onto C(K : ξ).

Proof. This follows by application of Lemma 6.12. �
Via the above isomorphism, πP,ξ,λ may be viewed as a (λ-dependent) represen-

tation of G on the (λ-independent) space C(K : ξ). This realization of πP,ξ,λ is
sometimes called the compact picture of the induced representation.

According to the above, we may equip C(P : ξ : λ) with the pre-Hilbert structure
defined by

〈 f, g〉 = 〈 f |K , g|K 〉L2(K ,Hξ )

=
∫

K
〈 f (k), g(k)〉Hξ

dk , (7.4)

where dk denotes normalized Haar measure on K . The Hilbert completion of
C(P : ξ : λ) for this structure is denoted by HP,ξ,λ. It can be shown that πP,ξ,λ

extends uniquely to a continuous representation of G in HP,ξ,λ.
Alternatively, the Hilbert space HP,ξ,λ may also be characterized as the space of

measurable functions f : G → Hξ that transform according to the rule (7.2) and
satisfy f

∣∣
K ∈ L2(K ,Hξ ), equipped with the inner product given by (7.4).

Generalized Vectors We now come to the result that motivated the introduction of
the shift by ρP in (7.1).

Proposition 7.2 Let ξ ∈ M̂P and λ ∈ a∗PqC. Then the sesquilinear pairing HP,ξ,λ×
HP,ξ,−λ → C defined by

〈 f, g〉 :=
∫

K
〈 f (k), g(k)〉〉Hξ

dk (7.5)

is G-equivariant. In particular, the representation πP,ξ,λ is unitary for λ ∈ ia∗Pq.
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Proof. It suffices to prove the equivariance for f and g smooth. In that case the
function 〈 f, g〉ξ : x 
→ 〈 f (x), g(x)〉Hξ

belongs to C∞(P : 1 : 1), which may
be identified with the space of smooth sections of the density bundle over P\G. Its
naturally defined integral over P\G is readily shown to equal the integral on the
right-hand side of (7.5). To see that the pairing is equivariant, we note that, for x ∈
G, 〈πξ,λ(x) f, πξ,−λ̄(x)g〉ξ equals the pullback of 〈 f, g〉ξ under the diffeomorphism
Pg 
→ Pgx . The integration of densities is invariant under diffeomorphisms. For
more details concerning this proof in terms of densities, we refer the reader to [7],
Lemma 2.1. �

The space of smooth vectors for πP,ξ,λ equals the space

C∞(P : ξ : λ)

of smooth functions G → H∞
ξ transforming according to the rule (7.2), see [28],

Sect. III.7. for details. The sesquilinear pairing of the above proposition induces a
G-equivariant linear embedding

HP,ξ,−λ ↪→ (C∞(P : ξ : λ))′ = H−∞
P,ξ,λ .

This provides motivation for us to use the notation

C−∞(P : ξ : −λ) := (C∞(P : ξ : λ))′ .

The sesquilinear pairing of Proposition 7.2 then naturally extends to a sesquilinear
pairing

C∞(P : ξ : λ)× C−∞(P : ξ : −λ) → C ,

also denoted by 〈 · , · 〉.
Similarly, we define C∞(K : ξ) to be the space of smooth functions K → H∞

ξ

transforming according to the rule (7.3) and C−∞(K : ξ) for its continuous antilinear
dual. Then the restriction map f 
→ f

∣∣
K induces topological linear isomorphisms

C±∞(P : ξ : λ) � C±∞(K : ξ). Accordingly, the representations π±∞
P,ξ,λ may then

be realized in the λ-independent spaces C±∞(K : ξ).
The Plancherel formula will essentially be built from the representations of X∧

ds
and from the induced representations πP,ξ,λ, where P ∈ Pσ , P �= G, and where ξ

belongs to the discrete series of MP/MP ∩ vHv−1 for some v ∈ W , and λ ∈ ia∗Pq.

8 H-Fixed Generalized Vectors

Orbit Structure We assume that P ∈ Pσ , ξ ∈ M̂P and λ ∈ a∗PC and will try to
describe sufficiently many H -fixed elements in C−∞(P : ξ : λ). With this in mind
it is important to have knowledge of the H -orbits on P \G. The following result is a
direct consequence of results of Matsuki, [69], and, independently, Rossmann, [80];
see also [5], App. B.
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We agree to write WP for the centralizer of aPq in W . Equivalently, WP is the
subgroup of W generated by the reflections in the roots of �P . We fix a collec-
tion PW of representatives for WP\W/WK∩H , contained in NK (aq). We denote by
P\G/H the collection of H -orbits on P\G and by (P\G/H)open the subset of open
orbits.

Proposition 8.1 The set P\G/H is finite. Moreover, the map v 
→ PvH is a bijec-
tion from PW onto (P\G/H)open. In particular, the union ∪v∈PW PvH is an open
dense subset of P\G.

On the open H -orbits one expects the elements of C−∞(P : ξ : λ)H to be
just functions, which may be evaluated in points. Let ϕ ∈ C−∞(P : ξ : λ)H and
let v ∈P W . Then one expects that ϕ(v) is a vector in H−∞

ξ which is fixed for

ξ ⊗ (λ+ ρP )⊗ 1
∣∣

P∩vHv−1 , because of the formal identity, for p ∈ P ∩ vHv−1,

[ξ ⊗ (λ+ ρp)⊗ 1](p) ϕ(v) = ϕ(pv) = ϕ(vv−1 pv)

= [πξ,λ(v
−1 pv)ϕ](v)

= ϕ(v),

since v−1 pv ∈ H . This implies that ϕ(v) ∈ (H−∞
ξ )MP∩vHv−1

and (λ+ ρP )|aP∩h =
0. The latter condition is equivalent to λ|aP∩h = 0, in view of the following lemma.

Lemma 8.2 ρP vanishes on aP ∩ h.

Proof. Since θσ (nP ) = nP , by Lemma 6.9 (b), it follows that ρP (θσ X) = ρP (X)

for all X ∈ aP . Hence ρP = −ρP on aP ∩ h. �
Writing aPh := aP ∩ h, we have the direct sum decomposition

aP = aPh ⊕ aPq

via which we may identify a∗PqC with the subspace of a∗PC consisting of elements that
vanish on aP ∩ h. The heuristic argument given above suggests that it is reasonable
to expect that the induction parameter λ should be restricted to the subspace a∗PqC of
a∗PC.

We note that, for v ∈ PW , the space

XP,v := MP/MP ∩ vHv−1 (8.1)

is reductive symmetric in the class under consideration. Indeed, MP is of the Harish-
Chandra class by Lemma 6.13. Moreover, as Ad(v) ◦ σ ◦ Ad(v−1) = −I on aPq,
the map σv : x 
→ vσ(v−1xv)v−1 leaves the group MP invariant and defines an
involution on it, having vGσ v−1 ∩ MP as its set of fixed points. The involution σv

commutes with θ . For later purposes we observe that the space

∗aPq := mP ∩ aq (8.2)
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equals the orthocomplement of aPq in aq with respect to any W -invariant inner prod-
uct. Moreover, ∗APq = exp(∗aPq) is the analogue of Aq for each of the spaces (8.1).

We now agree to define the finite-dimensional Hilbert space V (P, ξ, v), for ξ ∈
M̂P and v ∈ PW , by

V (P, ξ, v) = (H−∞
ξ )

MP∩vHv−1

ds if ξ ∈ X∧
P,v,ds

= 0 otherwise .

(See (2.19) for the notation used.)

Definition 8.3 Let ξ ∈ M̂P . We define V (P, ξ) to be the formal direct Hilbert sum

V (P, ξ) =
⊕

v∈PW
V (P, ξ, v) . (8.3)

If η ∈ V (P, ξ), then ηv denotes its component in V (P, ξ, v).

The idea now is to invert the map ϕ 
→ (ϕ(v))v∈PW described above. An element
µ ∈ a∗Pq is called strictly P-dominant if

〈µ, α〉 > 0 , for all α ∈ �(P) .

Definition 8.4 Let η ∈ V (P, ξ). For λ ∈ a∗PqC with −(Reλ + ρP ) strictly P-

dominant we define the function j (P : ξ : λ : η) : G → H−∞
ξ by

j (P : ξ : λ : η)(man vh) = aλ+ρP ξ(m)ηv (8.4)

for v ∈ PW , man ∈ P , h ∈ H and by 0 outside ∪v∈PW PvH (the union of the
open P × H -orbits).

Theorem 8.5 Let ξ ∈ M̂P and let η ∈ V (P, ξ). For every λ ∈ a∗PqC with
−(Reλ + ρP ) strictly P-dominant, the function j (P : ξ : λ : η) defines an ele-
ment of C−∞(P : ξ : λ)H .

Moreover, λ 
→ j (P : ξ : λ : η) extends meromorphically to a∗PqC as a function

with values in C−∞(K : ξ). The singular locus of this extended function is the union
of a locally finite collection of hyperplanes of the form 〈λ, α〉 = c, with α ∈ �(P)

and c ∈ C.
Finally, if λ is a regular value, then

j (P : ξ : λ : η) ∈ C−∞(P : ξ : λ)H .

Remark 8.6 For the case of minimal P ∈ Pσ , Theorem 8.5 is due to [5], where a
proof based on the meromorphic continuation of intertwining operators is given and
to [74], where a proof based on Bernstein’s result on the meromorphic continuation
of a complex power of a polynomial is given. In the same setting of a minimal σ -
parabolic subgroup, in [6], Sect. 9, it is shown that j (P : ξ : λ) satisfies a functional
equation that allows for translation in the parameter λ.

For general P ∈ Pσ , Theorem 8.5 is due to [31]. Later, in [34] a proof based on
a generalization of the mentioned functional equation was given.
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The meromorphic continuation is absolutely crucial for the development of the
theory, since the set ia∗Pq (where the πP,ξ,λ are unitary) is not contained in the region
〈Reλ+ ρP , α〉 < 0 (α ∈ �(P)).

By meromorphic continuation one still has that j (P : ξ : λ : η)(v) = ηv ,
showing that j (P : ξ : λ) = j (P : ξ : λ : ·) defines an injective homomorphism

V (P, ξ) ↪→ C−∞(P : ξ : λ)H ,

for regular λ. Thus V (P, ξ) becomes a model for the space VπP,ξ,λ
defined in the text

above (2.17). The inner product of V (P, ξ) may be transferred to an inner product
on VπP,ξ,λ

. However, it is more convenient to keep working with V (P, ξ), since this
space is independent of λ.

Definition 8.7 We define X∧
P,∗,ds to be the set of ξ ∈ M̂P for which the space

V (P, ξ), defined in (8.3), is nonzero.

Remark 8.8 The above condition on ξ ∈ M̂P is equivalent to

∃v ∈ PW : ξ ∈ X∧
P,v,ds .

Remark 8.9 Let P be a minimal element of Pσ (with respect to inclusion). Then
a+Pq is maximal among the facets of �, hence an open Weyl chamber. Thus, aPq = aq

is maximal abelian in p∩q. From this one can derive that MP/MP ∩vHv−1 is com-
pact, for v ∈P W = W . It follows that X∧

P,∗,ds consists of finite-dimensional unitary
representations of M . This makes the nature of the functional analysis involved in
Theorem 5 considerably simpler. Under the assumption [W : WK∩H ] = 1 this case
is discussed in [82].

Example 8.10 (Riemannian case) Let σ = θ and let P ∈ Pσ be minimal. Then
MP ⊂ K , hence X∧

P,∗,ds consists of the trivial representation 1. Moreover, one may

take PW = {e} and V (P, 1) = C, equipped with the standard inner product. Then

j (P : 1 : λ : 1)(nak) = aλ+ρp .

Thus, j (P : 1 : λ : 1) equals 1λ, the unique K -fixed vector in C(P : 1 : λ)

determined by 1λ(e) = 1.

Definition 8.11 Let P ∈ Pσ . The series of unitary representations πP,ξ,λ, for ξ ∈
X∧

P,∗,ds and λ ∈ ia∗Pq, is called the generalized σ -principal series associated with P .

The Plancherel measure will turn out to be supported by the generalized σ -
principal series associated with the finite set of parabolic subgroups P ∈ Pσ .

In order to work in a uniform way, we understand the above definitions to include
the discrete series for G/H . More precisely, assume that G/H satisfies the rank
condition of Theorem 5.4, so that center(g)∩ p∩ q = {0}. We consider the parabolic
subgroup P = G. Then MP/MP ∩ H � G/H and accordingly one may identify
X∧

P,∗,ds with X∧
ds. Moreover, aPq = {0}. For ξ ∈ X∧

P,∗,ds we now have HP,ξ,0 � Hξ

and πP,ξ,0 ∼ ξ . Thus, the discrete series may be thought of as the generalized σ -
principal series associated with the σ -parabolic subgroup G.



42 E. P. van den Ban

9 The Action of Invariant Differential Operators

A Canonical Homomorphism In this section we describe the action of the algebra
U (g)H of invariant differential operators on the H -fixed generalized vectors intro-
duced in the previous section. This action factors to an action of the algebra D(X) of
invariant differential operators on these vectors.

Let P ∈ Pσ . Then from Lemma 6.9 we infer that the map n̄P → h given by
X 
→ X + σ(X) induces a linear isomorphism from n̄P onto h/h ∩ m1P . It follows
that g = nP ⊕ [m1P + h]. By the Poincaré–Birkhoff–Witt theorem this implies that

U (g) = nPU (g)⊕ [U (m1P )⊗U (m1P∩h) U (h)]. (9.1)

Moreover, this decomposition is stable under the adjoint action by HP := M1P ∩
H . Accordingly, for D ∈ U (g)H , we define the element �µP (D) in the space
U (m1P )

HP /U (m1P )
HP ∩ U (m1P )hP by

D − �µP (D) ∈ [nPU (g)+ U (g)h],

where we have abused language in an obvious way. In view of Lemma 2.5, applied
to X and X1P = M1P/M1P ∩H , it is now readily seen that the map �µP factors to an
algebra homomorphism from D(X) to D(M1P/M1P ∩ H). We define the character
dP : M1P →]0,∞[ by

dP (m) = | det(Ad(m)|nP )|1/2.

Using the duality of Section 4 it is seen that the function dP is right HP -invariant.
Moreover, dP = 1 on MP and dP = eρP on AP . Multiplication by the function
dP induces a topological linear isomorphism from C∞(X1P ) onto itself; moreover,
if m ∈ M1P , then L−1

m ◦ dP ◦ Lm = dP (m) dP . It follows that conjugation by dP

induces a linear automorphism of D(X1P ). Accordingly, for D ∈ D(X) we define
the differential operator

µP (D) := d−1
P ◦ �µP (D) ◦ dP ∈ D(X1P ).

Let b be a θ -stable maximal abelian subalgebra of q, containing aq. Let γ : D(X) →
I (b) be the Harish-Chandra isomorphism introduced in Section 4 and let γX1P :
D(X1P ) → IP (b) be the similar isomorphism for the space X1P ; here IP (b) denotes
the subalgebra of W (m1PC, b)-invariants in S(b). Since X1P depends on P through
its σ -split component aPq, the same holds for the isomorphism γX1P .

Lemma 9.1 The map µP is an injective algebra isomorphism from D(X) into
D(X1P ) which depends on P through its split component aPq. Moreover,

γX1P ◦ µP = γ. (9.2)

Equation (9.2) is proved in the same fashion as the analogous result for Rieman-
nian symmetric spaces. See [6], Sect. 2, for details. The remaining assertions readily
follow.



The Plancherel Theorem for a Reductive Symmetric Space 43

The multiplication map MPσ × APq → M1P induces a diffeomorphism XP ×
APq → X1P , which in turn induces an algebra isomorphism

D(X1P ) � D(XP )⊗ U (aPq).

Moreover, since aPq is abelian, the universal enveloping algebra U (aPq) of its com-
plexification is naturally isomorphic with the symmetric algebra S(aPq), which
in turn is naturally isomorphic with the algebra P(a∗Pq) of complex polynomial
functions a∗PqC → C. Accordingly, for every D ∈ D(X), the associated element
µP (D) ∈ D(X1P ) may be viewed as a D(XP )-valued polynomial function on a∗PqC;
this polynomial function is denoted by

λ 
→ µP (D : λ).

If v ∈ NK (aq), we denote the analogue of µP for the symmetric pair (G, vHv−1)

by µv
P . Thus, µv

P is an algebra homomorphism D(G/vHv−1) → D(X1P,v).
Conjugation by v in U (g) naturally induces an algebra isomorphism D(X) →
D(G/vHv−1), which we denote by Ad(v). We define an algebra homomorphism
µP,v : D(X) → D(X1P,v) by

µP,v = µv
P ◦ Ad(v).

Let D ∈ D(X); then by the natural isomorphism D(X1P,v) � D(XP,v) ⊗ P(a∗Pq),
the operator µP,v(D) may be viewed as a D(XP,v)-valued polynomial function on
a∗PqC. As such it is denoted by λ 
→ µP,v(D : λ).

We now recall from the text preceding Lemma 2.8 that for ξ ∈ X∧
P,v,ds the finite

dimensional space

Vξ = (H−∞
ξ )

MP∩vHv−1

ds

has a natural structure of D(XP,v)-module. The endomorphism by which the operator
µP,v(D : λ) acts on this module is denoted by µP,v(D : ξ : λ). Finally, the direct
sum of these endomorphisms, for v ∈ PW , is an endomorphism of V (P, ξ), denoted
by

µP (D : ξ : λ) := ⊕v∈PW µP,v(D : ξ : λ).

The following result is a straightforward consequence of Lemma 2.8.

Lemma 9.2 The space V (P, ξ) has a basis, subordinate to the decomposition (8.3),
with respect to which every endomorphism µP (D : ξ : λ) diagonalizes, for D ∈
D(X) and λ ∈ a∗PqC.

Action on Generalized Vectors We can now finally describe the action of the alge-
bra of invariant differential operators on the H -fixed generalized vectors introduced
in the previous section.
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Lemma 9.3 Let P ∈ Pσ and ξ ∈ X∧
P,v,ds. Then for all η ∈ V (P, ξ) and D ∈

U (g)H ,

πP,ξ,λ(D) j (P : ξ : λ)η = j (P : ξ : λ)µP (D : ξ : λ)η, (9.3)

as a meromorphic C−∞(K : ξ)-valued identity in the variable λ.

We give a sketch of the proof. For the case that P is minimal, details can be found
in [5] and [6], Section 4. For general P , details can be found in [38], Proof of Prop.
3.

By a technique going back to F. Bruhat, [30], see also [34], it can be shown that
for λ in an open dense subset �(P, ξ) of a∗PqC, no element j of C−∞(P : ξ : λ)H is
supported by lower dimensional P × H double cosets. Therefore, such an element is
completely determined by its restriction to the open P×H double cosets. According
to Proposition 8.1, the latter are parametrized by PW . On every open orbit, j has
equivariance properties for the transitive action by P × H and is therefore a genuine
function with values in H−∞

ξ ; in particular it may be evaluated at the points of PW .

We conclude that, for λ ∈ �(P, ξ), any element j ∈ C−∞(P : ξ : λ)H is completely
determined by the values evv j := j (v), for v ∈ PW . Thus, by meromorphy, it
suffices to check the identity (9.3) when evaluated in v ∈ PW , for generic λ ∈
�(P, ξ). It follows from (8.4) and Theorem 8.5 that evv j (P : ξ : λ)η = ηv . Hence,
evaluation in v of the right-hand side of (9.3) yields µP,v(D : ξ : λ)ηv .

On the other hand, combining the equivariance properties of j (P : ξ : λ) with
the definition of µP,v(D : ξ : λ) given earlier in this section, we infer, writing πλ :=
πP,ξ,λ, that

evv πλ(D) j (P : ξ : λ)η = eve πλ(Adv(D)) πλ(v) j (P : ξ : λ)η

= eve πλ(
�µv

P (Ad(v)D)) πλ(v) j (P : ξ : λ)η

= µP,v(D : ξ : λ) eve πλ(v) j (P : ξ : λ)η

= µP,v(D : ξ : λ)ηv. �

Example 9.4 (Riemannian case) In the notation of Example 8.10, the above for-
mula (9.3) becomes πP,1,λ(D)1λ = γ (D : λ)1λ, for D ∈ D(G/K ).

10 The Plancherel Theorem

Normalization of Measures In this section we will formulate the Plancherel the-
orem for the symmetric space X = G/H in the sense of representation theory. We
first need to describe the precise relations between the normalizations of the mea-
sures that come into play.

First, we equip ia∗q with a W -invariant positive definite inner product so that it
becomes a Euclidean space. For each P ∈ Pσ this inner product restricts to a positive
definite inner product on ia∗Pq. The associated Euclidean Lebesgue measure is de-
noted by dµP . Similarly, the orthocomplement i∗a∗Pq, see also (8.2), is equipped with
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the Euclidean Lebesgue measure dλP . Accordingly, the product measure dλP dµP

equals the Euclidean Lebesgue measure on ia∗q.
On each group ∗APq, let dm P denote a choice of Haar measure. In terms of this

Haar measure we may define an associated Euclidean Fourier transform by

f̂ (λ) =
∫
∗APq

f (a) a−λ dm P (a).

We fix dm P uniquely by the requirement that the associated Fourier transform ex-
tends to an isometry from L2(∗APq, dm P (a)) onto L2(i∗a∗Pq, |WP |dλP ).

We recall from the text following (8.2) that ∗APq is the analogue of Aq for the
symmetric spaces XP,v = MP/MP ∩ vHv−1, for v ∈ PW . Finally, we agree to fix
the normalization of the invariant measure dxP,v on XP,v so that dm P is the invariant
measure of ∗APq specified in Theorem 3.9 applied to the data XP,v , K ∩ MP and
∗APq.

Fourier Transform The first step towards the Plancherel decomposition is the
introduction of a suitable Fourier transform. This is done in terms of the H -fixed
generalized vectors introduced in Section 8.

Definition 10.1 The (unnormalized) Fourier transform u f̂ of a function f ∈ C∞
c (X)

is defined by

u f̂ (P : ξ : λ) =
∫

G/H
f (x) πP,ξ,λ(x) j (P : ξ : λ) dx (10.1)

for P ∈ Pσ , ξ ∈ X∧
P,∗,ds and generic λ ∈ ia∗Pq.

We note that the Fourier transform in (10.1) belongs to the Hilbert space
Hom(V (P, ξ),HP,ξ,λ) which is canonically identified with V (P, ξ)⊗HP,ξ,λ. The
tensor product of the trivial and the principal series representation on these spaces,
respectively, is denoted by 1 ⊗ πP,ξ,λ.

Example 10.2 (Riemannian case) In the notation of Example 8.10, we find that

u f̂ (P : 1 : λ)(k) =
∫

G/K
f (x)1λ(kx) dx, (k ∈ K ),

the usual formula for the Fourier transform of G/K .

The following result is an immediate consequence of Definition 10.1.

Lemma 10.3 Let P ∈ Pσ and ξ ∈ X∧
P,∗,ds. For generic λ ∈ ia∗Pq, the map

f 
→ u f̂ (P : ξ : λ)

intertwines the regular representation L with the representation 1 ⊗ πP,ξ,λ.
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The next result is a straightforward consequence of Definition 10.1 combined
with Lemma 9.3.

Lemma 10.4 Let P ∈ Pσ and ξ ∈ X∧
P,∗,ds. Then for all D ∈ D(X) and all f ∈

C∞
c (X),

u (̂D f )(P : ξ : λ) = u f̂ (ξ : λ) ◦ µP (Dt : ξ : λ)

for generic λ ∈ a∗PqC.

It follows from the above lemma combined with Lemma 9.2 that the action of
the algebra D(X) of invariant differential operators allows for a simultaneous diago-
nalization on the Fourier transform side.

The Fourier transform defined above is one of the ingredients of the Plancherel
decomposition. To define the Plancherel measure, we need to introduce the so-called
standard intertwining operators.

Let P, Q ∈ Pσ and assume that APq = AQq. Then also MP = MQ and AP =
AQ . Let ξ ∈ X∧

P,∗,ds = X∧
Q,∗,ds. Write

�(Q : P) = {α ∈ � | gα ⊂ n̄Q ∩ nP } .

Then for λ ∈ a∗PqC with 〈Reλ, α〉 sufficiently large for each α ∈ �(Q : P), the
following integral converges absolutely, for f ∈ C∞(P : ξ : λ) and x ∈ G,

A(Q : P : ξ : λ) f (x) =
∫

NQ∩N P

f (nx)dn . (10.2)

Here dn is a suitably normalized Haar measure of NQ ∩ N P . Moreover, it can
be shown that A(Q : P : ξ : λ) defined above is a continuous linear operator
C∞(P : ξ : λ) → C∞(Q : ξ : λ), intertwining the representations πP,ξ,λ and
πQ,ξ,λ. Finally, A(Q : P : ξ : λ) can be meromorphically extended in the parameter
λ ∈ a∗PqC. For details, we refer the reader to [66] and [86].

For every P ∈ Pσ we put

a
∗reg
Pq = {λ ∈ a∗Pq | 〈λ, α〉 �= 0 ∀α ∈ �(P)} .

Theorem 10.5 Let ξ ∈ X∧
P,∗,ds. Then for every λ ∈ ia∗reg

Pq , the representation πP,ξ,λ

is irreducible (unitary).

Proof. If P is a minimal element of Pσ , this follows from a result of Bruhat, [30]. For
P nonminimal it follows from a result of Harish-Chandra, see [67]. The application
of Harish-Chandra’s result requires the information on ξ provided by Theorems 5.4
and 5.6, see [22], Thm. 10.7. �

We retain the notation introduced in the text preceding Theorem 10.5. The stan-
dard intertwining operator has an adjoint

A(Q : P : ξ : −λ)∗ : C−∞(Q : ξ : λ) → C−∞(P : ξ : λ)
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which depends meromorphically on λ ∈ a∗PqC and is G-equivariant. This adjoint
equals the continuous linear extension of A(P : Q : ξ : λ) and will therefore be
denoted by A(P : Q : ξ : λ) as well. The operator

A(P : P : ξ : −λ̄)∗ ◦ A(P : P : ξ : λ) (10.3)

is a G-intertwining operator from C∞(P : ξ : λ) to C∞(P : ξ : λ) for generic
λ ∈ ia∗Pq, hence a scalar by the above theorem. By meromorphy it follows that
(10.3) equals

η(P : ξ : λ) I (10.4)

with η(P : ξ : · ) : a∗PqC → C a meromorphic function. From the fact that
(10.4) equals the composed map in (10.3) it follows that η ≥ 0 on ia∗Pq. Hence

η(P : ξ : · )−1 defines a measurable function on ia∗Pq with values in [0,∞[. At this
point the function η(P : ξ) is only defined up to a positive scalar, due to the fact
that no precise normalization of the Haar measure dn̄ P of N̄P has been specified. In
what follows the precise normalization will be of importance. Let ϕP : G →] 0,∞ [
be the function defined by ϕP (namk) = a2ρP , for nam ∈ P and k ∈ K . Thus,
ϕP ∈ C∞(P : 1 : ρP ). We fix the normalization of our measure by requiring that

[A(P̄ : P : 1 : ρP )ϕP ](1) =
∫

N̄P

ϕP (n̄) dn̄ P = 1,

where the integral is known to converge absolutely. We now define the measure
dµP,ξ on ia∗Pq by

dµP,ξ (λ) := 1

η(P : ξ : λ)
dµP (λ) , (10.5)

where dµP is Lebesgue measure on ia∗Pq, normalized as described in the first para-
graph of the present section.

Example 10.6 (Riemannian case) We use the notation of Example 8.10 and recall
from the theory of Riemannian symmetric spaces that

A(P̄ : P : 1 : λ)1λ = c(λ) 1λ, (10.6)

with c(λ) the well-known scalar c-function for G/K . In view of the definition of η,
this leads to

η(P : 1 : λ) = |c(λ)|2 (λ ∈ ia∗p),

so that the measure dµP,1(λ) takes the familiar form |c(λ)|−2 times Lebesgue mea-
sure.
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The normalizer of aPq in the Weyl group W is denoted by W ∗
P ; recall that the

centralizer in W of the same set is denoted by WP . We define the group

W (aPq) = W ∗
P/WP .

Restriction to aPq induces a natural isomorphism from this group onto a subgroup
of GL(aPq).

Definition 10.7 Two parabolic subgroups P, Q ∈ Pσ are said to be (σ–) associated
if their σ -split components aPq and aQq are conjugate under the Weyl group W . The
equivalence relation of being associated is denoted by ∼.

Let Pσ be a set of representatives in Pσ for the classes of ∼. Thus, Pσ is in
one-to-one correspondence with Pσ / ∼. The following result is a first version of the
Plancherel theorem.

Theorem 10.8 Let f ∈ C∞
c (X). Then

‖ f ‖2
L2(X)

=
∑

P∈Pσ

[W : W ∗
P ]
∑

ξ∈X∧
P,∗,ds

∫
ia∗Pq

‖u f̂ (P : ξ : λ)‖2 dµP,ξ (λ) . (10.7)

Example 10.9 (Riemannian case) We use the notation of Example 8.10. We now
need to use the information that noncompact Riemannian symmetric spaces have no
discrete series, which follows from Harish-Chandra’s work on the discrete series,
but also from Theorem 5.4. This allows us to conclude that X∧

P,∗,ds = ∅, unless P
is a minimal parabolic subgroup containing Ap = Aq and ξ = 1. Moreover, then
V (P, 1) equals C, equipped with the standard inner product, and W = W ∗

P . In view
of Example 10.6 we see that (10.7) takes the usual form of the Plancherel formula
for G/K .

Theorem 10.8 motivates the following definition of a unitary direct integral rep-
resentation. First, for P ∈ Pσ and ξ ∈ X∧

P,∗,ds, we define the Hilbert space

H(P, ξ) := V (P, ξ)⊗ L2(K : ξ),

equipped with the tensor product inner product. In addition, we define

uL2(P, ξ) := L2(ia∗Pq, H(P, ξ), [W : W ∗
P ] dµP,ξ ),

the space of square integrable functions ia∗Pq → H(P, ξ), equipped with the L2-
Hilbert structure associated with the indicated measure. The above space is equipped
with the representation πP,ξ of G given by

[πP,ξ (x)ϕ](λ) = [1 ⊗ πP,ξ,λ(x)]ϕ(ν),

for ϕ ∈ uL2(P, ξ) and x ∈ G. It can be shown that πP,ξ is a continuous unitary
representation of G. In fact, it provides a realization of a direct integral,
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πP,ξ �
∫ ⊕

ia∗Pq

1V (P,ξ) ⊗ πP,ξ,λ [W : W ∗
P ] dµP,ξ (λ) .

We define (πP ,
uL2(P)) as the Hilbert direct sum of the unitary representations

(πP,ξ ,
uL2(P, ξ)), for ξ ∈ X∧

P,∗,ds. Finally, we define (π, uL2) as the unitary direct

sum of the representations (πP ,
uL2(P)), for P ∈ Pσ . Thus,

π � ⊕P∈Pσ ⊕̂ξ∈X∧
P,∗,ds

πP,ξ .

The following result is now a straightforward consequence of Theorem 10.8.

Corollary 10.10 f 
→ u f̂ extends to an isometry uF from L2(X) into the Hilbert
space uL2, intertwining the representation L with the representation π .

Remark 10.11 The reason for the summation over Pσ rather than Pσ is that the
principal series for associated P, Q ∈ Pσ are related by intertwining operators, as
we shall now explain.

First, assume that aPq = aQq. Then the standard intertwining operator A(Q : P :
ξ : λ) intertwines the representations πP,ξ,λ and πQ,ξ,λ for ξ ∈ X∧

P,∗,ds = X∧
Q,∗,ds

and generic λ ∈ ia∗Pq.

If Q = wPw−1 for some Weyl group element w ∈ W , then there also exists
an intertwining operator between principal series representations for P and Q. It is
defined as follows. We observe that wMPw

−1 = MQ . Hence if ξ ∈ M̂P , then the
representation w · ξ defined by wξ(m) = ξ(w−1mw) belongs to M̂Q (here we have
abused notation, w should be replaced by a representative in NK (aq)). Now the map
L(w) given by

L(w)ϕ(x) = ϕ(w−1x)

defines an intertwining operator from HP,ξ,λ to HQ,wξ,wλ which is obviously uni-
tary.

Finally, if PW is a set of representatives for WP\W/WK∩H in NK (aq), then
QW = wPW is a set of representatives for WQ\W/WK∩H . This implies that ξ 
→
wξ is a bijection from X∧

P,∗,ds onto X∧
Q,∗,ds.

In general, if Q ∼ P , then there exists a P ′ ∈ Pσ with aPq = aP ′q and Q =
wP ′w for some w ∈ W . From the above two cases we see that the principal series
for P and for Q are related by intertwining operators.

We have called Theorem 10.8 a preliminary version of the Plancherel theorem,
since it does not yet describe the image of uF. In fact, uF is not onto uL2, due to the
presence of intertwining operators. These intertwining operators are also the cause of
double occurrences of irreducible representations in the direct integral representation
π .

To be more precise, let w ∈ W ∗
P . Then the operator L(w), introduced in Remark

10.11, intertwines πP,ξ,λ with πwPw−1,wξ,wλ. Since

w(aPq) = awPw−1q ,
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the latter representation is intertwined with πP,wξ,wλ by the standard intertwining
operator A(P : wPw−1 : wξ : wλ), see Remark 10.11. The following result implies
that more than this cannot happen.

Proposition 10.12 For j = 1, 2, let Pj ∈ Pσ , ξ j ∈ X∧
Pj ,∗,ds and λ j ∈ ia∗reg

Pj q . Then
the representations πP1,ξ1,λ1 and πP2,ξ2,λ2 are equivalent if and only if P1 = P2 and
if there exists a w ∈ W (aP1q) such that ξ2 = wξ1 and λ2 = wλ1.

Proof. This result, which is closely related to Theorem 10.5, is due to Harish-
Chandra, see [67] and [22], Prop. 10.8, for details. �

The next result describes the effect on the Fourier transform of the intertwining
operators mentioned above.

Proposition 10.13 Let P ∈ Pσ , w ∈ W ∗
P and ξ ∈ X∧

P,∗,ds. Then wξ ∈ X∧
P,∗,ds,

and dµP,wξ (wλ) = dµP,ξ (λ). Moreover, there exists a unique unitary isomorphism
uCP,w(ξ, λ) from V (P, ξ) ⊗ L2(K : ξ) onto V (P, wξ) ⊗ L2(K : wξ), depending
on λ ∈ ia∗Pq in a measurable way, such that

u f̂ (P : wξ : wλ) = uCP,w(ξ, λ)
u f̂ (P : ξ : λ) .

The operator uCP,w(ξ, λ) intertwines 1 ⊗ πP,ξ,λ with 1 ⊗ πP,wξ,wλ. Moreover, if
u, v ∈ W ∗

P , then

uCP,uv(ξ, λ) = uCP,u(vξ, vλ)
uCP,v(ξ, λ),

for almost every λ ∈ ia∗Pq.

It follows from the above proposition that for P, w, ξ as above we may define a
unitary operator uCP,w(ξ) : uL2(P, ξ) → uL2(P, wξ) by

uCP,w(ξ)ϕ(λ) = uCP,w(ξ, w
−1λ)ϕ(w−1λ).

The direct sum of these operators, for ξ ∈ X∧
P,∗,ds, defines a unitary operator uCP,w

from
uL2(P) := ⊕̂ξ∈X∧

P,∗,ds

uL2(P, ξ)

onto itself, intertwining the representation πP := ⊕̂ξ πP,ξ with itself. Moreover,
w 
→ uCP,w defines a unitary representation of W ∗

P in uL2(P). The direct sum of
these representations, for P ∈ Pσ , defines a unitary representation of W ∗

P in uL2,
commuting with the representation π of G. Accordingly, the space of W ∗

P -invariants
is a closed invariant subspace of uL2.

Proposition 10.14 The image of the map uF, see Corollary 10.10, is given by

image(uF) = (uL2)W ∗
P .
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The group W (aPq) = W ∗
P/WP acts freely, but in general not transitively, on the

components of a
∗reg
Pq , which are the facets in a∗q whose spans equal a∗Pq.

Let �P be a fundamental domain for the action of W (aPq) on ia∗reg
Pq , consisting

of connected components of ia∗reg
Pq . Then, for each P ∈ Pσ and every ξ ∈ X∧

P,∗,ds,

we denote by uL2
�P

(P, ξ) the closed G-invariant subspace of functions in uL2(P, ξ)

that vanish almost everywhere outside �P . Finally, we define the following closed
G-invariant subspace of uL2,

uL2
0 := ⊕P∈Pσ ⊕̂ξ∈X∧

P,∗,ds

uL2
�P

(P, ξ).

The orthogonal projection onto this subspace is denoted by ϕ 
→ ϕ0. After these
preparations we can now describe the Plancherel decomposition induced by the un-
normalized Fourier transform.

Theorem 10.15 (Plancherel theorem) The map f 
→ (uF f )0 defines an isometry
from L2(X) onto uL2

0, intertwining L with π , establishing the Plancherel decompo-
sition

L ∼ ⊕P∈Pσ ⊕̂ξ∈X∧
P,∗,ds

∫
�P

1V (P,ξ) ⊗ πP,ξ,λ [W : WP ] dµP,ξ (λ) . (10.8)

In particular, for all P ∈ Pσ and ξ ∈ X∧
P,∗,ds, the representation πP,ξ,λ occurs with

multiplicity dim V (P, ξ), for almost every λ ∈ ia∗Pq.

Proof. The fact that uF establishes a direct integral decomposition follows from The-
orem 10.8 combined with Corollary 10.10 and Proposition 10.13. The occurring rep-
resentations are almost all irreducible by Theorem 10.5, and almost all inequivalent
by Proposition 10.12. �

Remark 10.16 It follows from Lemma 10.4 and Lemma 9.2 that the action of the
algebra D(X) on C∞

c (X) transfers via uF to an action on the space on the right-
hand side of (10.8), which respects the direct integral decomposition and allows a
compatible simultaneous diagonalization.

The fact that the functions λ 
→ u f̂ (P : ξ : λ) may have singularities on ia∗Pq,
even for f ∈ C∞

c (X), is no problem from the Hilbert space direct integral point of
view. However, in the proofs that will be described later, it will turn out to be crucial
to have a different normalization of the Fourier transform available. The normalized
Fourier transform is going to be defined as in Definition 10.1, but with j (P : ξ : λ)
replaced by a differently normalized element of Hom(V (P, ξ),C−∞(P : ξ : λ)H ).

Definition 10.17 Let P ∈ Pσ , ξ ∈ X∧
P,∗,ds. We define

j◦(P : ξ : λ) = A(P̄ : P : ξ : λ)−1 j (P̄ : ξ : λ)

as a meromorphic Hom(V (P, ξ),C−∞(K : ξ))-valued function of λ ∈ a∗PqC.
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From the fact that µP = µP̄ , see Lemma 9.1, it is readily seen that Lemma 9.3
is valid with j◦ in place of j .

The normalization of j in Definition 10.17 is motivated by the following remark-
able property.

Theorem 10.18 (Regularity theorem) The Hom(V (P, ξ),C−∞(K : ξ))-valued
meromorphic function λ 
→ j◦(P : ξ : λ) is regular on ia∗Pq.

The proof Theorem 10.18 is based on a similar result, formulated in the next sec-
tion, for the so-called normalized Eisenstein integral. For P a minimal σ -parabolic
subgroup the result is due to [15]. For general P it is due to [35].

Example 10.19 (Riemannian case) We use the notation of Example 8.10. In view
of (10.6), it follows that

j◦(P : ξ : λ)(1) = c(λ)−11λ. (10.9)

Thus, in this case the regularity theorem amounts to the well-known fact that the
c-function has no zeros on ia∗p.

We now define the normalized Fourier transform f̂ of a function f ∈ C∞
c (X)

as u f̂ , but with everywhere j (P : ξ : λ) replaced by j◦(P : ξ : λ). Then Theorem
10.18 has the following immediate consequence.

Corollary 10.20 Let P ∈ Pσ and ξ ∈ X∧
P,∗,ds. Then for every f ∈ C∞

c (X), the

function λ 
→ f̂ (P : ξ : λ) is analytic as a V (P, ξ) ⊗ C∞(K : ξ)-valued function
on ia∗Pq.

A simple calculation leads to the following relation between u f̂ and f̂ , for f ∈
C∞

c (X):
f̂ (P : ξ : λ) = [I ⊗ A(P̄ : P : ξ : λ)−1] u f̂ (P̄ : ξ : λ).

From this it readily follows that

‖ f̂ (P : ξ : λ)‖2 = η(P̄ : ξ : λ)−1 ‖u f̂ (P̄ : ξ : λ)‖2 . (10.10)

This relation has the effect that the normalized Fourier transform induces a Planch-
erel decomposition with Plancherel measure equal to ordinary Lebesgue measure.
Indeed, let P ∈ Pσ and ξ ∈ X∧

P,∗,ds; then, for f ∈ C∞
c (X),

‖u f̂ (P : ξ : λ)‖2 dµP,ξ (λ) = ‖ f̂ (P : ξ : λ)‖2 dµP .

It follows that Theorem 10.8 is equivalent to a similar result for the normalized
Fourier transform f 
→ f̂ with dµP (λ) in place of dµP,ξ (λ).

For P ∈ Pσ and ξ ∈ X∧
P,∗,ds, let L2(P, ξ) be defined as uL2(P, ξ), but with the

Lebesgue measure dµP (λ) in place of dµP,ξ (λ). Thus,
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L2(P, ξ) := L2(ia∗Pq, H(P, ξ), [W : W ∗
P ] dµP ). (10.11)

Moreover, let (π,L2) be defined accordingly. Then Corollary 10.10 is equivalent
to the similar result involving the unnormalized Fourier transform and (π,L2).
We denote the continuous linear extension of the normalized Fourier transform by
F : L2(X) → L2. Proposition 10.13 is now equivalent to a normalized version,
with different intertwining operators CP,w(ξ : λ) : H(P, ξ) → H(P, wξ). In view
of (10.10), the connection of these intertwining operators with their unnormalized
analogues is given by

uCP̄,w(ξ : λ) ◦ [1 ⊗ A(P̄ : P : ξ : λ)] = [1 ⊗ A(P̄ : P : wξ : wλ)]CP,w(ξ : λ).

As before we define a unitary representation of W (aPq) in L2 commuting with π ,
so that Proposition 10.14 is equivalent to its normalized analogue. Finally, we fix
fundamental domains �P ⊂ ia∗reg

Pq for the action of W (aPq), and define L2
0 in a sim-

ilar fashion as uL2
0. Then L2

0 is a closed G-invariant subspace of L2. The orthogonal
projection onto it is denoted by ϕ 
→ ϕ0. Theorem 10.15 is now equivalent to the
following normalized analogue.

Theorem 10.21 (Normalized version of the Plancherel theorem) The map f 
→
(F f )0 defines an isometry from L2(X) onto L2

0, intertwining L with π , establishing
the Plancherel decomposition

L ∼ ⊕P∈Pσ ⊕̂ξ∈X∧
P,∗,ds

∫
i�P

1V (P,ξ) ⊗ πP,ξ,λ [W : WP ] dµP (λ) .

Remark 10.22 Since Lemma 9.3 is valid with j◦ in place of j , it follows that
Lemma 10.4 is valid with f 
→ f̂ in place of f 
→ u f̂ . Therefore, the obvious
analogue of Remark 10.16 is valid for F.

Remark 10.23 In Delorme’s paper [40] the above formula occurs without the con-
stants [W : WP ]. This is due to a different normalization of measures. More pre-
cisely, Delorme uses the normalization of measures described in the first paragraph
of this section, with the exception of the Lebesgue measure dλP on i∗a∗Pq, which he
normalizes by the requirement that the Euclidean Fourier transform of ∗APq extend
to an isometry L2(∗APq, dm P ) → L2(i∗a∗Pq, dλP ).

11 The Spherical Plancherel Theorem

The Eisenstein Integral A main step towards proving the Plancherel theorem con-
sists of proving the analogue of Theorem 10.8 for the normalized Fourier transform
f 
→ f̂ . It suffices to do this on the subspace of functions of a specific left K -type.
To be more precise, let δ ∈ K̂ and let C∞

c (X)δ be the subspace of C∞
c (X) consist-

ing of left K -finite functions of type δ. Then it suffices to show that f 
→ f̂ is an
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isometry from C∞
c (X)δ , equipped with the inner product of L2(X), to the space L2

δ of
K -finite elements of type δ in L2. The restriction of the Fourier transform to C∞

c (X)δ
naturally leads to the concept of Eisenstein integral, as we will now explain.

We start by observing that

L2(X)δ � HomK (Vδ, L2(X))⊗ Vδ

� (L2(X)⊗ V ∗
δ )

K ⊗ Vδ .

Here and in what follows, unspecified isomorphisms are assumed to be the obvious
natural ones. Put τ = τδ := δ∗ ⊗ 1 and Vτ = Vτδ := V ∗

δ ⊗ Vδ; then it follows that

L2(X)δ � (L2(X)⊗ Vτ )
K

= L2(X : τ) ,

where the latter space is the space of functions ϕ in L2(X, Vτ ) that are τ -spherical,
i.e.,

ϕ(kx) = τ(k)ϕ(x) , (x ∈ X , k ∈ K ) . (11.1)

Similar considerations lead to analogous definitions for spaces of spherical functions
associated with C∞

c (X), C∞(X), C(X). In the L2-context all the natural isomor-
phisms are isometric if we agree to equip V ∗

δ ⊗ Vδ � End(Vδ) with d−1
δ times the

Hilbert–Schmid inner product. Note that so far we have used nothing special about
X; the whole construction applies to a manifold X equipped with a smooth K -action
and a K -invariant density.

The natural isomorphism L2(X)δ → L2(X : τδ) will be called sphericalization,
and is denoted by

f 
→ f sph . (11.2)

We recall from the general considerations in Section 2 that the Fourier transform
f 
→ f̂ (P : ξ : λ) may also be given by testing with a matrix coefficient. In the
present context, let P ∈ Pσ and ξ ∈ X∧

P,∗,ds. Then for generic λ ∈ a∗PqC we define
the map

MP,ξ,λ : V (P, ξ)⊗ C∞(K : ξ) → C∞(X) (11.3)

by the following formula, for η ⊗ ϕ ∈ V (P, ξ)⊗ C∞(K : ξ) and x ∈ X,

MP,ξ,λ(η ⊗ ϕ)(x) = 〈ϕ, πP,ξ,−λ(x) j◦(P : ξ : −λ)η〉.

Here j◦(P : ξ : −λ) is as in Definition 10.17. From the definition of the normalized
Fourier transform, we now obtain, for f ∈ C∞

c (X) and T ∈ V (P, ξ)⊗ C∞(K : ξ),
that

〈 f̂ (P : ξ : λ), T 〉 = 〈 f,MP,ξ,−λ(T )〉 . (11.4)
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We observe that MP,ξ,λ intertwines the generalized principal series representation
πP,ξ,λ ⊗ I with the left regular representation L . In particular, it follows that MP,ξ,λ

maps V (P, ξ)⊗C∞(K : ξ)δ into C∞(X)δ � C∞(X : τδ). An Eisenstein integral is
essentially an element in the image of MP,ξ,λ, viewed as an element of C∞(X : τδ).
It becomes a very practical tool if we realize the parameter space V (P, ξ) ⊗
C∞(K : ξ)δ in a different fashion.

Let P ∈ Pσ and ξ ∈ X∧
P,∗,ds and let v ∈ PW . If V (P, ξ, v) is nontrivial, then

ξ belongs to the discrete series of the space XP,v defined by (8.1). In any case, we
consider the natural matrix coefficient map V (P, ξ, v)⊗Hξ → L2(XP,v) and denote
its image by

L2(XP,v)ξ .

In particular, this space is nontrivial if and only if ξ ∈ X∧
P,v,ds. We put K P := K∩MP

and define τP := τδ,P = τδ|K P . Then L2(XP,v : τP ) = (L2(XP,v) ⊗ Vτ )
K P .

Accordingly, we define

L2(XP,v : τP )ξ := (L2(XP,v)ξ ⊗ Vτ )
K P .

Lemma 11.1 The space V (P, ξ) ⊗ C∞(K : ξ)δ is finite dimensional and equals
the Hilbert space V (P, ξ) ⊗ L2(K : ξ)δ . Moreover, there is a natural isometrical
isomorphism

V (P, ξ)⊗ C∞(K : ξ)δ
�−→ ⊕v∈PW L2(XP,v : τδ,P )ξ ,

where ⊕ denotes the formal direct sum of Hilbert spaces.

Proof. First, we note that L2(K : ξ) is the representation space for the induced
representation ind K

K P
(ξ | K P ). By Frobenius reciprocity we have

HomK (Vδ, L2(K : ξ)) � HomK P (Vδ,Hξ ) . (11.5)

Hence,

L2(K : ξ)δ � HomK P (Vδ,Hξ )⊗ Vδ

� (Hξ ⊗ Vτδ )
K P . (11.6)

It is a standard fact from representation theory that each K P -type occurs with finite
multiplicity in ξ ∈ M̂P . Therefore, the space in (11.6) is finite dimensional. It follows
that L2(K : ξ)δ is finite dimensional, hence equals its dense subspace C∞(K : ξ)δ .
This establishes the first two assertions.

From (11.5) it follows, for v ∈ PW , that

V (P, ξ, v)⊗ L2(K : ξ)δ � (V (P, ξ, v)(1) ⊗Hξ ⊗ Vτδ )
K P

� (L2(XP,v)ξ ⊗ Vτδ )
K P

by the matrix coefficient map of ξ . Here, the index (1) on a tensor component indi-
cates that the action of the group K P is trivial on that component. The argument is
completed by taking the direct sum over v ∈ PW . �
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We denote the isomorphism of Lemma 11.1 by T 
→ ψT , a notation that is
compatible with Harish-Chandra’s notation in the case of the group, see [58], §7,
Lemma 1.

Definition 11.2 Let ψ ∈ ⊕v∈PW L2(XP,v : τδ,P )ξ . Then, for λ ∈ a∗PqC, the nor-
malized Eisenstein integral E◦(P : ψ : λ) is defined by

E◦(P : ψ : λ) = Msph
P,ξ,−λ(T ) ∈ C∞(X : τδ) ,

where T ∈ V (P, ξ)⊗ C∞(K : ξ)δ is such that ψ = ψT .

Example 11.3 (Riemannian case) We use the notation of Example 8.10 and con-
sider the case of the trivial K -type δ = 1, so that Vτ = C and C∞(G/K : τ)

equals the space C∞(K\G/K ) of bi-K-invariant smooth functions on G. Then
V (P, 1)⊗ C∞(K : 1)δ � C. Moreover, PW = {e} and ψ1 = 1. In view of (10.9) it
follows that in this setting the normalized Eisenstein integral is given by

E◦(P : 1 : λ)(x) =
∫

K
c(λ̄)−1)1λ̄(kx) dk = c(λ)−1ϕλ(x),

where ϕλ is the zonal spherical function in C∞(K\G/K ), determined by the param-
eter λ.

The above definition of the Eisenstein integral can be extended to a bigger ψ-
space, by collecting all ξ ∈ X∧

P,∗,ds together. We need some preparation for this.

Definition 11.4 Let (τ, Vτ ) be any finite-dimensional unitary representation of K .
Then by A2(X : τ) we denote the space of smooth functions f ∈ C∞(X : τ)

satisfying the following conditions:

(a) f ∈ L2(X : τ);
(b) D(X) f is finite dimensional.

Theorem 11.5 The space A2(X : τ) is finite dimensional. Moreover, it decomposes
as the orthogonal direct sum

A2(X : τ) = ⊕ξ∈X∧
ds

L2(X : τ)ξ .

In particular, only finitely many summands in the direct sum are nonzero.

Proof. This is a deep result, which is equivalent to the assertion that for a given δ ∈ K̂
only finitely many representations from the discrete series of X contain the K -type δ.
It follows from the classification of the discrete series by Oshima and Matsuki [77].
We will see that it also follows from our proof of the Plancherel formula, if one uses
the information on the discrete series given in Theorems 5.4 and 5.6. Of course, the
latter results are due to [77] as well. �
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We define the finite-dimensional Hilbert space A2,P = A2,P (τδ) by

A2,P := ⊕v∈PW A2(XP,v : τδ,P ) , (11.7)

where ⊕ denotes the formal orthogonal direct sum of Hilbert spaces. By Theorem
11.5, applied to XP,v for v ∈ PW , the space A2,P decomposes as the orthogonal
direct sum, for ξ ∈ X∧

P,∗,ds, of the spaces

A2,P,ξ := ⊕v∈PW L2(XP,v : τδ,P )ξ .

Accordingly, given ψ ∈ A2,P , we write ψξ for the component determined by ξ ∈
X∧

P,∗,ds.

Definition 11.6 For ψ ∈ A2,P we define the normalized Eisenstein integral
E◦(P : ψ : λ) ∈ C∞(X : τ) by

E◦(P : ψ : λ) =
∑

ξ∈X∧
P,∗,ds

E◦(P : ψξ : λ) .

The Regularity Theorem We shall now describe the action of invariant differen-
tial operators on the Eisenstein integral. Let D ∈ D(X). If v ∈ PW and λ ∈ a∗PqC,
then µP,v(D : λ) is an operator in D(XP,v), which naturally acts on the space
A2(XP,v, τP ) by an endomorphism µ

P,v
(D, λ). The direct sum of these endomor-

phisms, for v ∈ W , is an endomorphism of A2,P , denoted by

µ
P
(D : λ) := ⊕v∈W µ

P,v
(D : λ). (11.8)

Proposition 11.7 For every ψ ∈ A2,P , the Eisenstein integral E◦(P : ψ : λ) is
meromorphic as a function of λ ∈ a∗PqC with values in C∞(X : τ). Moreover, it
behaves finitely under the action of D(X), for generic λ ∈ a∗PqC. More precisely, for
every D ∈ D(X),

DE◦(P : ψ : λ) = E◦(P : µ
P
(D : λ)ψ : λ),

as a meromorphic identity in the variable λ ∈ a∗PqC.

The regularity theorem for j◦, Theorem 10.18, is essentially equivalent to the
following regularity theorem for the Eisenstein integral.

Theorem 11.8 (Regularity theorem) The C∞(X : τ)-valued meromorphic function
λ 
→ E◦(P : ψ : λ) is regular on ia∗Pq, for every ψ ∈ A2,P .

This result is proved by a careful asymptotic analysis combined with the Maass–
Selberg relations presented in Theorem 11.22 below. For P a minimal σ -parabolic
subgroup it is due to [15]. For general P it is due to [35], which in turn makes use of
[10].

The Fourier transform defined in the text below Theorem 10.18 can be expressed
in terms of the normalized Eisenstein integral.
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Lemma 11.9 Let F ∈ C∞
c (X : τδ), and let f be the corresponding function in

C∞
c (X)δ , i.e., F = f sph . Then

〈 f̂ (P : ξ : λ), T 〉 =
∫

X
〈F(x), E◦(P : ψT : −λ)(x)〉Vτ dx ,

for every T ∈ V (P, ξ)⊗ L2(K : ξ) and all λ ∈ ia∗Pq.

Proof. Let T be as mentioned. Then using (11.4) we find that

〈 f̂ (P : ξ : λ), T 〉 = 〈 f,MP,ξ−λ(T )〉
= 〈F,Msph

P,ξ,−λ
(T )〉

=
∫

X
〈F(x), E◦(P : ψT : λ)(x)〉Vτ dx . �

The Spherical Fourier Transform The relation in Lemma 11.9 provides mo-
tivation for the following definition of the spherical Fourier transform. We write
E◦(P : λ) for the Hom(A2,P , Vτ )-valued function on X given by

E◦(P : λ)(x)ψ = E◦(P : ψ : λ)(x) ,

ψ ∈ A2,P , x ∈ X. Moreover, we define the so-called dual Eisenstein integral to be
the Hom(Vτ ,A2,P )-valued function on X given by

E∗(P : λ : x) := E(P : −λ : x)∗ ,

for x ∈ X and generic λ ∈ a∗PqC.

Definition 11.10 Let F ∈ C∞
c (X : τ). The spherical Fourier transform FP F :

ia∗Pq → A2,P is defined by

FP F(λ) =
∫

X
E∗(P : λ : x)F(x)dx . (11.9)

Example 11.11 (Riemannian case) In the setting of Example 11.3 it follows that
FP f (λ) equals c(−λ)−1 times the usual spherical Fourier transform f̃ (λ), i.e.,

FP ( f )(λ) = c(−λ)−1 f̃ (λ) = c(−λ)−1
∫

G/K
f (x)ϕ−λ(x) dx,

for f ∈ C∞
c (K\G/K ) and generic λ ∈ a∗pC.

It follows from Definition 11.10 that

〈 f̂ (P : ξ : λ), T 〉 = 〈FP F(−λ), ψT 〉 (11.10)

in the notation of Lemma 11.9. The change from λ to −λ is somewhat awkward,
but nevertheless incorporated here to guarantee a traditional form for the asymptotic
approximations of the Eisenstein integral as the space variable tends to infinity. Given
a finite-dimensional real linear space V we shall use the notation S(V ) for the usual
space of rapidly decreasing or Schwartz functions V → C.
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Proposition 11.12 Let P ∈ Pσ . The Fourier transform FP maps C∞
c (X : τ) con-

tinuous linearly into the Schwartz space S(ia∗Pq)⊗A2,P .

This result is a consequence of uniformly tempered estimates for the Eisenstein
integral combined with partial integration. More comments on the proof are given in
the text following Theorem 11.16.

The operator FP has the so-called wave packet operator as its adjoint.

Definition 11.13 Let P ∈ Pσ . The wave packet operator JP is the operator from
S(ia∗Pq)⊗A2,P to C∞(X : τ), defined by

JPϕ(x) =
∫

ia∗Pq

E◦(P : λ : x)ϕ(λ) dλ .

Here dλ is abbreviated notation for the Lebesgue measure dµP (λ) on ia∗Pq, normal-
ized as in the beginning of Section 10.

Theorem 10.8 and its normalized version are now equivalent to the following re-
sult, which is the major ingredient in the Plancherel theorem for spherical functions.

Theorem 11.14 Let f ∈ C∞
c (X : τ). Then

f =
∑

P∈Pσ

[W : W ∗
P ]JPFP f . (11.11)

Example 11.15 (Riemannian case) In the setting of Example 11.3, we have that

JPψ(x) =
∫

ia∗p
ψ(λ)c(λ)−1ϕλ(x) dλ.

If we combine this with Example 11.11 and use the remarks of Example 10.9, we
see that (11.11) takes the form of the inversion formula for Riemannian symmetric
spaces,

f (x) =
∫

ia∗p
f̃ (λ)ϕλ(x)

dλ

|c(λ)|2 .

There is a natural notion of Schwartz function on X, which generalizes Harish-
Chandra’s notion of Schwartz function for the group. Let lX : X → [0,∞[ be
defined by lX (kah) = ‖ log a‖. Then the L2-Schwartz space of X is defined by

C(X) = { f ∈ C∞(X) | (1 + lX )
n Lu f ∈ L2(X) ∀u ∈ U (g), n ∈ N} .

Here Lu denotes the infinitesimal left regular action of u. Alternatively, the Schwartz
space can be characterized in terms of sup-norms of derivatives. Let � : G/H →
]0,∞[ be defined by �(x) = �(xσ(x)−1)1/2, where � denotes Harish-Chandra’s
elementary spherical function for G/K with spectral parameter 0. Then a function
f ∈ C∞(X) belongs to C(X) if and only if for every u ∈ U (g) and all n ∈ N,
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sup
x∈X

|(1 + lX(x))
n �(x)−1Lu f (x)| < ∞.

For more details we refer the reader to [6], Sect. 17.

Theorem 11.16 Let P ∈ Pσ . Then

(a) The Fourier transform FP extends to a continuous linear operator from C(X : τ)
to S(ia∗Pq)⊗A2,P .

(b) The wave packet operator JP is a continuous linear operator from C(X : τ) to
S(ia∗Pq)⊗A2,P .

The fact that FP extends continuous linearly to the Schwartz space is a conse-
quence of uniformly tempered estimates for the Eisenstein integral. These will be
formulated at a later stage, see Theorem 14.1. That the extension maps into the Eu-
clidean Schwartz space S(ia∗Pq)⊗A2,P is a consequence of the tempered estimates
combined with partial integration, involving an application of Proposition 11.7.

Assertion (b) of the theorem is a consequence of the mentioned tempered esti-
mates and an application of the theory of the constant term of [33]. The proof is due
to [15] for P minimal and to [10] for P general.

The natural action of the algebra of invariant differential operators on C∞(X : τ)
leaves the subspace C(X : τ) invariant. Moreover, it behaves well with respect to the
Fourier and wave packet transforms. For D ∈ D(X) we denote by µ

P
(D : · ) the

endomorphism of S(ia∗Pq) ⊗ A2,P given by [µ
P
(D : · )ϕ](λ) = µ

P
(D : λ)ϕ(λ),

see also (11.8).

Lemma 11.17 Let P ∈ Pσ and D ∈ D(X). Then

(a) FP ◦ D = µ
P
(D : · ) ◦ FP ;

(b) D ◦ JP = JP ◦ µ
P
(D : · ).

Proof. Property (a) follows from Proposition 11.7 combined with Definition 11.10
and the relation µ

P
(D∗ : −λ̄)∗ = µ

P
(D : λ). For a proof of the latter relation,

see [21], Lemma 14.7. Property (b) follows from the mentioned Proposition 11.7
combined with Definition 11.13. �

CCC-Functions and Maass–Selberg Relations For the full Plancherel theorem, we
need to give a description of the image of (FP )P∈Pσ . This description involves so-
called C-functions, which occur in the asymptotic behavior of the Eisenstein integral.

If P, Q ∈ Pσ are associated, see Definition 10.7, we define

W (aQq | aPq) = {s|aPq | s ∈ W, s(aPq) ⊂ aQq} .

Theorem 11.18 Let P, Q ∈ Pσ be associated. There exist uniquely determined
Hom(A2,P ,A2,Q)-valued meromorphic functions λ 
→ C◦

Q|P (s : λ) on a∗PqC, for
s ∈ W (aQq | aPq), such that
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E◦(P : λ : mav)ψ ∼
∑

s∈W (aQq |aPq)

asλ−ρQ [C◦
Q|P (s : λ)ψ]v(m) ,

as a → ∞ in A+
Qq, for all λ ∈ ia∗Pq, v ∈ QW , m ∈ XQ,v and ψ ∈ A2,P ; here

sλ := λ ◦ s−1.

The motivation for the particular normalization in the definition of j◦, see Defi-
nition 10.17, is ultimately given by the following result.

Proposition 11.19 C◦
P|P (1 : λ) = I .

The C-functions allow us to formulate the so-called functional equations for the
Eisenstein integral.

Theorem 11.20 Let P, Q ∈ Pσ be associated. Then, for all s ∈ W (aQq|aPq),

E◦(P : λ : x) = E◦(Q : sλ : x) ◦ C◦
Q|P (s : λ), (11.12)

for every x ∈ X, as a meromorphic identity in the variable λ ∈ a∗QqC.

This result generalizes Harish-Chandra’s functional equations for the case of the
group, see [55]. For symmetric spaces, and P, Q minimal, the result is due to [6].
The general result is due to [35]. Later, in [21] a different proof has been given,
based on the principle of induction of relations developed in [20]. It involves the idea
that the functions on both sides of (11.12) are essentially eigenfunctions depending
meromorphically on the parameter λ ∈ a∗PqC. Moreover, they satisfy conditions that

allow one to conclude their equality from the equality of the coefficient of asλ−ρQ in
the expansion along A+

Qqv, for each v ∈ QW . The latter equalities amount to

C◦
Q|P (s : λ) = C◦

Q|Q(1 : sλ)C◦
Q|P (s : λ),

which is valid in view of Proposition 11.19.
The functional equations for the Eisenstein integral imply transformation formu-

las for the normalized C-functions.

Proposition 11.21 Let P, Q, R ∈ Pσ be associated, and let s ∈ W (aQq|aPq) and
t ∈ W (aRq|aQq). Then

C◦
R|P (ts : λ) = C◦

R|Q(t : sλ)C◦
Q|P (s : λ), (11.13)

as a Hom(A2,P ,A2,R)-valued identity of meromorphic functions in the variable λ ∈
a∗PqC.

Proof. This follows from (11.12) by comparing the coefficients of atsλ−ρR in the
asymptotic expansions along A+

Rqv, for v ∈ RW . �
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The proof of the regularity theorem, Theorem 11.8, is based on an asymptotic
analysis together with the following important fact.

Theorem 11.22 (Maass–Selberg relations) Let P, Q ∈ Pσ be associated and let
s ∈ W (aQq | aPq). Then

C◦
Q|P (s : −λ)∗C◦

Q|P (s : λ) = I .

In particular, if λ ∈ ia∗Pq, then C◦
Q|P (s : λ) is unitary.

In the case of the group, the above result is due to Harish-Chandra, [58]. He
introduced the name Maass–Selberg relations to emphasize remarkable analogies
with the theory of automorphic forms.

For symmetric spaces and P minimal, Theorem 11.22 (Maass–Selberg) is due to
E.P. van den Ban, [6]. For general P it is due to J. Carmona and P. Delorme, [35].
The latter paper depends in an essential way on Delorme’s paper [39].

Later, in [21], van den Ban and Schlichtkrull managed to obtain the Maass–
Selberg relations for general σ -parabolic subgroups from those for the minimal ones.
We will give more details at a later stage, see Theorem 14.2.

Example 11.23 (Riemannian case) In the setting of a Riemannian symmetric space
with P minimal, see Example 11.3, we see that C◦

P|P (s : λ) = c(λ)−1c(sλ). Thus, in

this case the Maass–Selberg relations with Q = P and s ∈ W amount to |c(λ)|2 =
|c(sλ)|2 for λ ∈ ia∗p (imaginary).

The Plancherel Theorem for Spherical Functions The functional equations for
the Eisenstein integral, together with the Maass–Selberg relations, imply transforma-
tion formulas for the associated Fourier transforms.

Proposition 11.24 Let P, Q ∈ Pσ be associated. Then, for every f ∈ C(X : τ) and
each s ∈ W (aQq|aPq),

FQ f (sλ) = C◦
Q|P (s : λ)FP f (λ), (λ ∈ ia∗Pq). (11.14)

Proof. Taking adjoints on both sides of (11.12), with −s̄−1λ in place of λ, and using
the Maass–Selberg relations (Theorem 11.22), we obtain the following functional
equation for the dual Eisenstein integral

C◦
Q|P (s : λ) ◦ E∗(P : λ : x) = E∗(Q : sλ : x). (11.15)

The transformation formula for the Fourier transforms is an immediate consequence.
�

Proposition 11.25 Let P, Q ∈ Pσ be associated. Then JP ◦ FP = JQ ◦ FQ on
C(X : τ).
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Proof. Let f ∈ C(X : τ). From (11.14) it follows that, for x ∈ X,

JQFQ f (x) =
∫

ia∗Pq

E◦(Q : sλ : x)FQ f (sλ) dλ

=
∫

ia∗Pq

E◦(Q : sλ : x)C◦
Q|P (s : λ)FP f (λ) dλ

=
∫

ia∗Pq

E◦(P : λ : x) )FP f (λ) dλ

= JPFP f (x).

The next to last equality follows from Theorem 11.20. �
The above result implies that the summation in Theorem 11.14 essentially ranges

over equivalence classes of associated parabolic subgroups.
Motivated by the transformation formula (11.14) with P = Q, we define

[S(ia∗Pq)⊗A2,P ]W (aPq) (11.16)

to be the subspace of S(ia∗Pq)⊗A2,P consisting of the functions ϕ satisfying

ϕ(sλ) = C◦
P|P (s : λ)ϕ(λ) ,

for all λ ∈ ia∗Pq, s ∈ W (aPq). It follows that FP maps C(X : τ) into the space
(11.16) introduced above.

Proposition 10.14 and its normalized version are consequences of the following
Plancherel theorem for spherical Schwartz functions.

Theorem 11.26 (The Plancherel formula for spherical functions) The map F :=
⊕P∈Pσ FP is a topological linear isomorphism

C(X : τ)
�−→ ⊕P∈Pσ (S(ia∗Pq)⊗A2,P )

W (aPq) .

Its inverse is given by
J := ⊕P∈Pσ [W : W ∗

P ]JP .

Moreover, for every f ∈ C(X : τ),

‖ f ‖2
L2(X:τ) =

∑
P∈Pσ

[W : W ∗
P ] ‖FP f ‖2

L2 .

The set Pσ contains precisely one minimal σ -parabolic subgroup of Pσ , since all
such are associated. Let us denote it by P0, and its Langlands decomposition by

P0 = M AN0.

We denote by Cmc(X : τ) the image of JP0 and call it the most continuous part
of the Schwartz space. The following results were proved in my earlier work with
Schlichtkrull on the most continuous part of the Plancherel theorem, [16].
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Theorem 11.27 There exists a differential operator Dτ ∈ D(X), depending on τ =
τδ , such that

(a) Dτ is injective on C∞
c (X : τ),

(b) Dτ ◦ JP0 ◦ FP0 = Dτ on C(X : τ).

It follows from the above result combined with the spherical Plancherel theorem that

Dτ ◦ JP = 0 for all P ∈ Pσ \ {P0},
hence also for all nonminimal σ -parabolic subgroups P ∈ Pσ . In particular, it fol-
lows that Cmc(X : τ) equals the orthocomplement of the kernel of Dτ in C(X : τ).

In the final sections of our exposition, we shall give a sketch of the proof of
Theorem 11.27, and derive the full Plancherel theorem from it by application of a
residue calculus.

12 The Most Continuous Part

Expansions for Eisenstein Integrals In this section we shall give a sketch of the
proof of Theorem 11.27, which serves as the starting point for our further derivations.

Let A+
q be the positive Weyl chamber associated with the choice of P0; i.e., A+

q =
A+

P0q. In the notation of (6.3), the associated choice of positive roots is given by

�+ := �(P0).

In this section we shall briefly write E◦(λ : x) for the normalized Eisenstein
integral E◦(P0 : λ : x). The theory of this Eisenstein integral, connected with the
minimal principal series for (G, H), is developed in [5], [6] and [15], along the lines
sketched in the previous sections. In Delorme’s work, partially in collaboration with
J. Carmona, the Eisenstein integrals associated with the nonminimal (or generalized)
principal series are introduced in a similar manner. In my work together with H.
Schlichtkrull, the more general Eisenstein integrals make their appearance in har-
monic analysis through a residue calculus in a way we shall explain in the sequel. It
is only at the end of the analysis that they are identified as matrix coefficients of the
generalized principal series.

Let us return to the Eisenstein integral E◦(λ : x) associated with the minimal
σ -parabolic subgroup P0. Put µ = µ

P0
. In view of Proposition 11.7, the action of

the invariant differential operators on the Eisenstein integral is described by

DE◦(λ : · ) = E◦(λ : · ) ◦ µ(D : λ), (D ∈ D(X)), (12.1)

as a meromorphic identity in the variable λ ∈ a∗qC. From this combined with the
fact that it is a (1 ⊗ τ)-spherical function on X it follows that the Eisenstein inte-
gral E◦(λ : x) has a particular asymptotic behavior as x tends to infinity in X. The
structure of directions to infinity in X is best understood in terms of the decomposi-
tion (3.10) in Corollary 3.7. Let A+

q and W be as in the mentioned corollary. Then
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the differential equations (12.1) give rise to so-called radial differential equations on
v−1 A+

q v, for every v ∈ W . These radial equations form a cofinite system. Moreover,
let � be a basis of a∗q containing the set � of simple roots in �+. Then the functions

a 
→ a−v−1α for α ∈ �, form a system of coordinates at infinity on v−1 A+
q v, with

respect to which the system of radial differential equations becomes of the regular
singular type at zero. As a consequence it follows that the Eisenstein integrals have
an asymptotic behavior that can be described in terms of power series in these coordi-
nates. More precisely, let D be the unit disk in C. Then we have the following result
from [14], Thm. 11.1. For the case of the group the result is due to Harish-Chandra
[52], see also [37] and [4] for the relation of the system (12.1) with the theory of
regular singularities. We agree to write ρ := ρP0 , τ := τδ, τM := τP0 = τ |K∩M and

◦C(τ ) := A2,P0(τ ) = ⊕v∈W C∞(M/M ∩ vHv−1 : τM ),

see (11.7). Note that M/M ∩ vHv−1 is compact, for v ∈ W , by minimality of P0 in
Pσ .

Theorem 12.1 Let v ∈ W . There exist meromorphic End(◦C(τ ))-valued functions
λ 
→ C◦(s : λ) on a∗qC, for s ∈ W , and a function �v : a∗qC × D� →
End(V M∩K∩vHv−1

τ ), meromorphic in the first and holomorphic in the second vari-
able, with �v(λ, 0) = I , such that

E◦(λ : av)ψ =
∑
s∈W

asλ−ρ �v(sλ, (a
−α)) [C◦(s : λ)ψ]v(e),

for every ψ ∈ ◦C(τ ), all a ∈ A+
q and generic λ ∈ a∗qC.

The function �v(λ : · ) has a power series expansion on D�, with coefficients

�µ(v, λ) ∈ End(V M∩K∩vHv−1

τ ),

for µ ∈ N�, which depend meromorphically on λ; moreover, the constant term is
given by �0(v, λ) = I . Accordingly, the Eisenstein integral E◦(λ : av) has the
following series expansion which describes its asymptotic behavior as a tends to
infinity in the chamber A+

q ,

E◦(λ : av)ψ =
∑
s∈W

∑
µ∈N�

asλ−ρ−µ �µ(v, λ) [C◦(s : λ)ψ]v(e).

Observe that the C-functions defined here were denoted by C◦
P0|P0

(s : λ) earlier, see
Theorem 11.18. In particular,

C◦(1 : λ) = I, (12.2)

and we have the Maass–Selberg relations, for s ∈ W ,

C◦(s : −λ̄)∗C◦(s : λ) = I. (12.3)
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In the present setting of a minimal σ -parabolic subgroup, the Maass–Selberg rela-
tions are due to [6]. The proof given in [6] depends on a careful study, [5], [8], of the
action of the standard intertwining operators, introduced in (10.2), on the H -fixed
generalized vectors of the minimal principal series, introduced in Section 8. See the
remarks following Theorem 11.22 for further comments on the history.

Proof of Theorem 11.27 The proof of Theorem 11.27, which amounts to the most
continuous part of the Plancherel decomposition, is given in [16]. We sketch some
of the main ideas occurring in that proof.

First, we agree to use the notation

�v(λ, a) = aλ−ρ�v(λ, (a
−α)).

Let f ∈ C∞
c (X : τ). Writing F := FP0 and J := JP0 and ignoring singularities in

the variable λ as well as convergence of integrals for the moment, we see that

JF f (av) =
∫

ia∗q

∑
s∈W

�v(sλ, a)[C◦(s : λ)F f (λ)]v(e) dλ (12.4)

=
∑
s∈W

∫
ia∗q

�v(sλ, a)[C◦(s : λ)F f (λ)]v(e) dλ (12.5)

=
∑
s∈W

∫
ia∗q

�v(sλ, a)[F f (sλ)]v(e) dλ (12.6)

= |W |
∫

ia∗q
�v(λ, a)[F f (λ)]v(e) dλ (12.7)

= |W |
∫

ia∗q+η

�v(λ, a)[F f (λ)]v(e) dλ + residual integrals

for a generic η ∈ a∗q that is antidominant, i.e., 〈η, α〉 < 0 for all α ∈ �. There
are two major problems with this procedure. The first is that the integrands may have
singularities as a function of λ. The second is that the integrands need to be estimated
in order to justify the passage from (12.4) to (12.5) and to apply Cauchy’s theorem
to the integral in (12.7). Both of these problems are dealt with in [6]. Both factors
of the integrand in (12.7) are shown to have singularities along a locally finite union
of hyperplanes of the form 〈λ, α〉 = c, (c ∈ R), for α ∈ �, of order independent
of f and a. Moreover, none of these hyperplanes meets η + ia∗q, if η is sufficiently
far out in the antidominant direction. The required estimates can be described as
follows. Let ω ⊂ a∗q be a bounded subset. Then there exists a polynomial function
q = qω : a∗qC → C, which is a product of factors of the form 〈 · , α〉− c, with α ∈ �

and c ∈ R, such that for some N ∈ N,

‖q(λ)�v(λ, a)‖ = O((1 + |λ|)N ),

locally uniformly in a ∈ A+
q , for λ in the strip ω + ia∗qC, and such that, for every

n ∈ N,
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‖q(λ)F f (λ)‖ = O((1 + |λ|)−n),

for λ in the same strip.
If D ∈ D(X), then F(D f )(λ) = µ(D : λ)F f (λ), by Lemma 11.17. In [16] it is

shown that there exists an operator Dτ ∈ D(X) depending on τ , such that the zeros
of µ(Dτ : · ) annihilate all singularities of the integrands in (12.4)–(12.7), and such
that

detµ(Dτ : · ) �= 0. (12.8)

It follows that all equalities in the array are valid with Dτ f instead of f , for any
f ∈ C∞

c (X : τ) and all η ∈ a∗q antidominant; moreover, the residual integrals vanish.
This leads to the equalities

JFDτ f (av) =
∫
η+ia∗q

�v(λ, a)[µ(Dτ : λ)F f (λ)]v(e) dλ, (12.9)

for each v ∈ W and all a ∈ A+
q . In the Riemannian case, where H = K , W = {1}

and τ = 1, one can show that Dτ = 1 fulfills the requirements. Moreover, the
procedure just described corresponds to the shift procedure applied by Helgason
[60].

Proposition 12.2 The operator JFDτ is a support preserving continuous linear
endomorphism of C∞

c (X : τ).

Sketch of proof. From estimates for the Eisenstein integral it can be shown that there
exists a polynomial function q : a∗qC → C, which is a product of factors of the form
〈 · , α〉 − c, with α ∈ � and c ∈ R, such that

‖q(λ)F f (λ)‖ = O((1 + ‖λ‖)−ne〈Reλ,µ〉)

in the region of points λ ∈ a∗qC with 〈Reλ, α〉 ≤ 0 for all α ∈ �+. Here µ is any

dominant element of a∗q with the property that µ ≤ 1 on A, for A ⊂ a+q any subset
with Av ⊃ A+

q v ∩ supp f . The functions �v have series expansions with estimates
similar to those obtained by Gangolli [47] for the Riemannian case, see [14] for
details. One can now apply a Paley–Wiener shift argument with η = −tµ, t → ∞,
to conclude that the smooth function JFDτ f has a support S satisfying µ ≤ 1 on
log[(S ∩ A+

q v)v−1]. Collecting these observations for v ∈ W , we conclude: if X0 ∈
a+q and f ∈ C∞

c (X : τ) is a function with support contained in K exp(conv W X0)H ,
then JFDτ f is a smooth function with support contained in the same set. Here
conv (W X0) denotes the convex hull of the Weyl group orbit W X0 in aq.

The operator Dτ can be chosen formally symmetric, so that JFDτ is symmetric
with respect to the L2-type inner product on C∞

c (X : τ), see also the text following
Proposition 11.12. In combination with this symmetry, the support properties just
mentioned imply that JFDτ is support preserving. �
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We can now finish our sketch of the proof of Theorem 11.27. It follows from
the above proposition, combined with the commutativity of the algebra D(X) and
Lemma 11.17, that T := JFDτ is a support preserving endomorphism commuting
with the algebra D(X). The property of support preservation implies that the operator
T is related to a differential operator. More precisely, we define the operator

T ↑ : C∞
c (A+

q , V M∩K∩H
τ ) → C∞

c (X : τ)

by T ↑ f (ka) = τ(k) f (a), for k ∈ K and a ∈ A+
q , and by T ↑ f = 0 outside K A+

q .
In the converse direction, we define the operator

T ↓ : C∞(X : τ) → C∞(A+
q , V M∩K∩H

τ )

by restriction. Then T rad := T ↓ ◦ T ◦ T ↑ is a support preserving continuous linear
endomorphism of C∞

c (A+
q , V M∩K∩H

τ ), hence a linear partial differential operator

with coefficients in C∞(A+
q )⊗ End(V M∩K∩H

τ ). We observe that for D ∈ D(X),

T ↓ ◦ D ◦ T ↑ = Drad,

the radial part of D along A+
q . Thus, the fact that T commutes with D(X) implies

that

[T rad, Drad] = 0, (D ∈ D(X)). (12.10)

These commutation relations form a cofinite system of differential equations for the
coefficients of the differential operator T rad, with regular singularities at infinity.
Moreover, the associated system of indicial equations has only the trivial exponent
as solution, so that T rad is completely determined by its top order asymptotic be-
havior at infinity. Let 〈 · , · 〉J denote the L2-inner product on C∞

c (A+
q , V M∩K∩H

τ )

associated with the measure Jda on A+
q . Then it follows from Theorem 3.9 that

〈 f, g〉J = 〈T ↑ f, T ↑g〉L2(X:τ). (12.11)

Using the asymptotic behavior of the Eisenstein integral, as described in Theorem
12.1, combined with the Maass–Selberg relations (12.3), it can be shown that

〈T rad fn, gn〉J ∼ 〈Drad
τ fn, gn〉J , (n → ∞),

for fn, gn sequences of functions in C∞
c (A+

q , V M∩K∩H
τ ) with the property that T ↑ fn

and T ↑gn have L2-norm 1 and that the compact sets supp fn and supp gn tend to
infinity in A+

q , for n → ∞. From this it can be deduced that T rad has the same top

order behavior as Drad
τ . The latter operator satisfies the same commutation relations

(12.10) as the operator T rad. Therefore,

T rad = Drad
τ .

Applying a similar argument involving chambers of the form v−1 A+
q v, for v ∈ W , it

follows that T = Dτ on functions from C∞
c (X : τ) supported by a compact subset of
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∪v∈W K A+
q vH . Since the latter union is open and dense in X it follows that T = Dτ .

This completes the proof of part (b) of Theorem 11.27.
The proof of part (a) is now based on the following result from [13]. Let b be

a θ -invariant Cartan subspace of q, containing aq. Let �(b) be the root system of b
in gC, and let �+(b) be a positive system for �(b) that is compatible with aq, i.e.,
the nonzero restrictions α|aq , for �+(b) form a positive system for �. Let nm be the
sum of the root spaces in gC for the roots of �+(b) that vanish on aq. We define the
linear functional ρm ∈ b∗C by

ρm(X) = 1

2
tr (ad(X)|nm).

Theorem 12.3 Let D ∈ D(X) and let D∗ denote its formal adjoint. Assume that the
polynomial function λ 
→ γ (D∗ : λ+ρm) is nontrivial on a∗q. Then D is injective on
C∞

c (X).

The proof of this result, due to [13], is based on an application of Holmgren’s
uniqueness theorem from the theory of linear partial differential equations with ana-
lytic coefficients, see [64], Thm. 5.3.1.

Part (a) of Theorem 11.27 follows because the operator Dτ can be constructed in
such a way that it satisfies the condition of Theorem 12.3.

The following is an immediate consequence of Theorem 11.27.

Corollary 12.4 The Fourier transform F = FP0 is injective on C∞
c (X : τ).

Two Problems In view of Corollary 12.4, it is natural to consider the following
two problems.

(a) Find an inversion formula expressing f ∈ C∞
c (X) in terms of its most-

continuous Fourier transform F f . This is the problem of Fourier inversion.

(b) Give a characterization of the image of C∞
c (X : τ) under the most-

continuous Fourier transform F . The solution of this problem would amount to a
Paley–Wiener theorem.

The solution to the first of these problems will be presented in the next section.
It is an important step towards both the Plancherel and the Paley–Wiener theorem.
The application to the Paley–Wiener theorems will be discussed elsewhere in this
volume, by H. Schlichtkrull.

13 Fourier Inversion

Partial Eisenstein Integrals We retain the notation of the previous section. For the
formulation of the Fourier inversion theorem it will be convenient to introduce the
concept of the so-called partial Eisenstein integral. First, we recall from Corollary
3.7, that the open dense subset X+ of X can be written as the disjoint union
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X+ =
⋃
v∈W

K A+
q vH.

Since X+ is left invariant under K , it makes sense to define the space C∞(X+ : τ) of
smooth τ -spherical functions f : X+ → Vτ , by imposing the rule (11.1) for x ∈ X+
and k ∈ K . Accordingly, via restriction to X+, the space C∞(X : τ) may be viewed
as the subspace of functions in C∞(X+ : τ) that have a smooth extension to all of
X.

In the following definition, we transfer the tensor product representation 1 ⊗ τ

of K in ◦C(τ )∗ ⊗ Vτ to a representation of K in Hom(◦C(τ ), Vτ ), via the obvious
natural isomorphism.

Definition 13.1 Let s ∈ W . The partial Eisenstein integral E+,s(λ : · ), for generic
λ ∈ a∗qC, is defined to be the 1⊗τ -spherical function in C∞(X+)⊗Hom(◦C(τ ), Vτ ),
given by

E+,s(λ : kav)ψ = τ(k)�v(sλ, a)[C◦(s : λ)ψ]v(e),

for ψ ∈ ◦C(τ ), k ∈ K , a ∈ A+
q and v ∈ W .

The partial Eisenstein integral is viewed as a function depending meromorphic-
ally on the parameter λ ∈ a∗qC. In addition, we agree to write

E+(λ : · ) := E+,1(λ : · ).
In view of (12.2), the partial Eisenstein integral E+,s is related to the one above by

E+,s(λ : · ) = E+(sλ : · )C◦(s : λ), (13.1)

for each s ∈ W .
With this notation, the equalities (12.9), for v ∈ W , can be rephrased as the

single equality

JFDτ f (x) = |W |
∫
η+ia∗q

E+(λ : x)µ(Dτ , λ)F f (λ) dλ, (13.2)

valid for f ∈ C∞
c (X : τ), x ∈ X+ and η ∈ a∗q sufficiently antidominant. Given

f ∈ C∞
c (X : τ), we now agree to write

TηF f (x) := |W |
∫
η+ia∗q

E+(λ : x)F f (λ) dλ, (x ∈ X+), (13.3)

for every η ∈ a∗q for which the integrand is regular on η + ia∗q. Then TηF f defines
an element of C∞(X+ : τ) which is independent of η, as long as η + ia∗q varies in a
connected open subset of a∗qC on which the integrand is regular, in view of Cauchy’s
theorem.

The Fourier inversion theorem asserts that the formula (13.2) is actually valid
with Dτ replaced by 1. For R ∈ R we define

a∗q(P0, R) = {λ ∈ a∗qC | 〈Reλ, α〉 < R (∀α ∈ �+)}.
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Theorem 13.2 (Fourier inversion) There exists a constant R ∈ R such that both
functions λ 
→ E+(λ : · ) and λ 
→ E∗(λ : · ) are holomorphic in the open set
a∗q(P0, R). If f ∈ C∞

c (X : τ), then, for every η ∈ a∗q(P0, R),

f = TηF f on X+. (13.4)

Since a∗q(P0, R) is convex, hence connected, TηF f is independent of the particu-
lar choice of η ∈ a∗q(P0, R). We will first establish the theorem under the assumption
that TηF f extends smoothly to all of X. Assume this to be true. Then by the Paley–
Wiener shift technique discussed in the previous section, it can be shown that TηF f
is compactly supported, hence belongs to C∞

c (X : τ). The partial Eisenstein integral
is readily seen to satisfy the differential equations (12.1) on X+. It follows from this
that

DτTηF f = Tη(µ(Dτ : · )F f ) = Tη(FDτ f ),

on X+, hence on X. In view of (13.2) and Theorem 11.27 (b) we now see that f −
TηF f is a function in C∞

c (X : τ), annihilated by Dτ . Hence, (13.4) follows by
application of Theorem 11.27 (a).

Thus, to complete the proof of Theorem 13.2, we must show that TηF f extends
smoothly from X+ to all of X. This will be achieved by a shift of integration, where
η → 0. The shift will give rise to residual integrals that are to be shifted again
according to a certain rule.

We shall describe some ideas of this residue calculus, which is developed in the
paper [18]. The notion of residue will be defined in terms of the notion of Laurent
functional, which generalizes the idea of taking linear combinations of coefficients
in Laurent series in one variable theory.

Laurent Functionals Let V be a finite-dimensional real linear space and let X ⊂
V ∗ \ {0} be a finite subset. For any point a ∈ VC, we define a polynomial function
πa : VC → C by

πa :=
∏
ξ∈X

(ξ − ξ(a)).

The ring of germs of meromorphic functions at a is denoted by M(VC, a), and the
subring of germs of holomorphic functions by Oa . In terms of this subring we define
the subring

M(VC, a, X) := ∪N∈N π−N
a Oa .

We use the notation eva for the linear functional on Oa that assigns to any f ∈ Oa

its value f (a) at a. We agree to write S(V ) for the symmetric algebra of VC, and
identify it with the algebra of constant coefficient complex differential operators on
VC.

Definition 13.3 An X -Laurent functional at a ∈ VC is a linear functional L ∈
M(VC, a, X)∗ such that for any N ∈ N there exists a uN ∈ S(V ) such that

L = eva ◦ uN ◦ πN
a on π−N

a Oa . (13.5)
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The space of all Laurent functionals on VC, relative to X , is defined as the algebraic
direct sum of linear spaces

M(VC, X)∗laur :=
⊕
a∈VC

M(VC, X, a)∗laur. (13.6)

For L in the space (13.6), the finite set of a ∈ VC for which the component La is
nonzero is called the support of L and is denoted by suppL.

According to the above definition, any L ∈ M(VC, X)∗laur, may be decomposed
as

L =
∑

a∈suppL
La .

Let M(VC, X) denote the space of meromorphic functions ϕ on VC with the property
that the germ ϕa at any point a ∈ VC belongs to M(VC, a, X). Then we have the
natural bilinear map M(VC, X)∗laur ×M(VC, X) → C, given by

(L, ϕ) 
→ Lϕ :=
∑

a∈suppL
Laϕa .

This bilinear map naturally induces an embedding of the space M(VC, X)∗laur onto
a linear subspace of the dual space M(VC, X)∗. For more details concerning these
definitions, we refer the reader to [20], Sect. 12.

A Residue Calculus for Root Systems We consider the non-restricted root system
� of aq in g. In this subsection we shall describe a residue calculus entirely in terms
of the given root system, without reference to the harmonic analysis on X. More
details can be found in [18]. At the end of Section 13 we shall discuss the application
of the residue calculus to harmonic analysis on the symmetric space.

We equip aq with a W -invariant positive definite inner product 〈 · , · 〉. It induces
a real linear isomorphism aq � a∗q via which we shall identify these spaces. Ac-
cordingly it makes sense to speak of the spaces M(a∗qC, �) and M(a∗qC, �)∗laur. Let
H be a locally finite collection of real �-hyperplanes, i.e., hyperplanes H ⊂ a∗qC
given by an equation of the form 〈αH , · 〉 = cH , with αH ∈ � and cH ∈ R. We
define M(a∗qC,H) to be the space of meromorphic functions ϕ on a∗qC with singular
locus contained in ∪H. Moreover, we define P(a∗qC,H) to be the subspace of func-
tions ϕ ∈ M(a∗qC,H) with fast decrease along strips in the imaginary directions.
More precisely, this requirement of fast decrease means that for every compact sub-
set ω ⊂ a∗q, there exists a polynomial function qω : a∗qC → C that is a product of
powers of linear factors of the form 〈αH , · 〉− cH , for H ∈ H, such that the function
ϕ satisfies the estimate

sup
λ∈ω+ia∗q

(1 + |λ|)n|qω(λ)ϕ(λ)| < ∞,

for every n ∈ N.
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By a root space in a∗q we mean any finite intersection of root hyperplanes of the

form α⊥, for α ∈ �. The collection of root spaces is denoted by R = R� . It is
understood that a∗q ∈ R. The map P 
→ a∗Pq is surjective from Pσ onto R. For this
map, the fiber Pσ (b) of an element b consists of all P ∈ Pσ with a∗Pq = b. We
agree to equip b with the Euclidean Lebesgue measure associated with the dual inner
product 〈 · , · 〉 of a∗q. For each η ∈ a∗q, the image of this measure under the map
ν 
→ η + iν, b → η + ib, is denoted by dµb.

If b ∈ R, then b⊥ is called a Levi subspace. This terminology has the following
explanation. If P ∈ Pσ (b), then b⊥ equals ∗a∗Pq, which is the analogue of a∗q for the
Levi component MP of P . We note that

�b⊥ := � ∩ b⊥ (13.7)

is a root system in b⊥. The map P 
→ �(P) maps the collection Pmin
σ of minimal

elements in Pσ bijectively onto the collection of positive systems for �. If P ∈ Pmin
σ

and b ∈ R, then �(P) ∩ b⊥ is a positive system for (13.7).
If b ∈ R, then breg is defined to be the intersection of all sets b \ α⊥, for α ∈ � \

�b⊥ . We observe that breg is the disjoint union of the chambers a∗+Pq, for P ∈ Pσ (b).
For b ∈ R and λ ∈ a∗q we denote by Hλ+b the collection of �-hyperplanes in

a∗qC containing λ + bC. Clearly, Hλ+b = λ + Hb. Moreover, if P ∈ Pσ (b), then

Hb = {α⊥
C | α ∈ �P }.

By a residue weight on � we mean a function t : Pσ → [0, 1] such that for all
b ∈ R, ∑

P∈Pσ (b)

t (P) = 1. (13.8)

Observe that by Corollary 6.8 and (6.3), the map P 
→ a+Pq is a bijection from Pσ

onto the Coxeter complex P(�), so that the residue weight is a notion completely
defined in terms of the root system. Accordingly, we shall sometimes view t as a map
P(�) → [0, 1] and write t (a+Pq) instead of t (P).

We now have the following result, which characterizes residual Laurent operators
in terms of a collection of integral shifts governed by a particular choice of residue
weight. If ξ is a point and b a root space in a∗q, then by ξb⊥ we denote the orthogonal

projection of ξ onto b⊥. The collection of complexified root hyperplanes α⊥
C , for

α ∈ �, is denoted by H�(0).

Proposition 13.4 Let t be a residue weight on �, let P ∈ Pmin
σ , and let ξ ∈ a∗q. Then

there exist unique Laurent functionals

ResP,t
ξ+b ∈ M(b⊥C, ξb⊥ , �b⊥)

∗
laur,

for b ∈ R, such that the following is valid for η ∈ a∗q sufficiently �(P̄)-dominant.
For every ϕ ∈ P(a∗qC, ξ +H�(0)),
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η+ia∗q

ϕ(λ) dλ =
∑
b∈R

∑
P∈Pσ (b)

t (P)

∫
pt (a∗+Pq)+ib

ResP,t
ξ+b[ϕ( · + ν)] dµb(ν), (13.9)

where pt (a∗+Pq) denotes an arbitrary choice of point in a∗+Pq, for each P ∈ Pσ .

For the proof of this proposition we refer the reader to [18], Thm. 1.13 and Sect.
3. The idea is that the integral on the left-hand side of (13.9) is shifted to a similar
integral with η close to zero; the latter integral is distributed over the open Weyl
chambers according to the residue weights. The shift is along a path that intersects the
singular hyperplanes for the integrand one at a time. By applying the classical residue
calculus with respect to a one-dimensional variable transversal to an encountered
singular hyperplane η + bC one obtains a residual integral along a codimension 1
hyperplane of the form η + ib, with η ∈ ξ + b. Such an integral is shifted in the
manner described above, in order to move η inside ξ+b to a position close to ξb⊥ . The
latter point may be characterized as the central point of ξ + b, i.e., the point closest
to the origin. The shifted integral is distributed over the chambers ξb⊥ + a+Pq, for
P ∈ Pσ (b), with weights determined by the residue weight t ; this explains condition
(13.8). In the process of shifting, residual integrals split off. These are treated in a
similar fashion, leading to residual integrals over affine spaces of lower and lower
dimension. As a result one ends up with the sum on the right of (13.9). This idea
of shifting is present in the work of R.P. Langlands [68] on automorphic forms, see
also [71], and in that of J. Arthur [1] on the Paley–Wiener theorem for real reductive
groups.

Another key idea needed in the proof of Proposition 13.4 is that the residue op-
erators are uniquely determined by the requirement that the formula be valid on the
large indicated space of test functions. This idea goes back to G.J. Heckman and
E.M. Opdam, [59]. It is this idea that allows one to develop the residue calculus in
terms of the root system only, without reference to the harmonic analysis on X.

If S is a finite subset of a linear space V , then by �−(S) we denote the closed
convex cone spanned by 0 and the points of −S. In particular, �−(∅) = {0}.

Proposition 13.5 Let t be a residue weight on �, P ∈ Pmin
σ , ξ ∈ a∗qC and b ∈ R,

and assume that

ResP,t
ξ+b �= 0. (13.10)

Then ξb⊥ is contained in the closed convex cone �−(�(P) ∩ b⊥).

Proof. We explain the idea of the proof, referring to [18] for details.
In the proof of Proposition 13.4 it is seen that the nontrivial contributions to

the residual operator in (13.10) come from successively taking residues in variables
transversal to hyperplanes of the form ξ + α⊥

C that contain ξ + b. Each step involves
a residual integral along η + ic, with c ∈ R and with η ∈ ξ + c. Moreover, in such a
step η crosses a hyperplane of the form ξ + (c∩α⊥), for α ∈ �(P)∩�b⊥ \�c⊥ . At
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the moment of crossing, η comes from the region 〈η− ξ, α〉 < 0 in ξ + c. Moreover,
the crossing only needs to take place if ξc⊥ is not in the same region in ξ + c, i.e.,

〈ξc⊥ − ξ, α〉 ≥ 0. (13.11)

The crossing causes a residual integral along η0 + ic0 to split off, with c0 = c ∩ α⊥
and η0 ∈ c0.

From (13.10) it follows that a crossing as above occurs with c0 = b and with
ResP,t

ξ+c �= 0. Applying induction with respect to codim b we may assume that

ξc⊥ ∈ �−(�(P) ∩ c⊥). (13.12)

On the other hand, it is clear that ξ−ξc⊥ is perpendicular to the roots from �(P)∩c⊥.
The positive system �(P) ∩ b⊥ for �b⊥ has precisely one simple root not perpen-
dicular to c. If we combine this with the inequality (13.11) for a certain root α from
�(P)∩�b⊥ \�c⊥ , we see that 〈ξc⊥ − ξ, β〉 ≥ 0 for all β ∈ �(P)∩b⊥. This implies
that ξ − ξc⊥ lies in the negative chamber in b⊥ associated with the positive system
�(P) ∩ b⊥. The chamber in turn is contained in �−(�(P) ∩ b⊥), so that

ξb⊥ − ξc⊥ ∈ �−(�(P) ∩ b⊥).

Combining this with (13.12) we deduce that

ξb⊥ ∈ �−(�(P) ∩ b⊥)+ �−(�(P) ∩ c⊥) ⊂ �−(�(P) ∩ b⊥). �

Transitivity of Residues We shall now describe a result which ensures that the
residue operators behave well with respect to parabolic induction. Via the natural
isomorphism aq � a∗q we shall view the Coxeter complex P = P(�) as the set of

facets in a∗q. Accordingly, P 
→ a∗+Pq defines a bijection from Pσ onto P .
Let b ∈ R; then the map s 
→ s+ b is a bijection from the collection R(�b⊥) of

root spaces in b⊥ for the root system �b⊥ onto the collection

R⊃b := {c ∈ R | c ⊃ b}.

If c ∈ R⊃b, then the associated root space in b⊥ is given by ∗c = c∩b⊥. In particular,
it follows from the above considerations that

creg ⊂ (∗c)reg + b ⊂ c.

From this in turn we see that for each open chamber C in c, there exists a unique
open chamber in �c, relative to the root system �b⊥ , such that C ⊂ ∗C + b. Let P⊃b

denote the collection of facets in P whose linear span is a root space containing b.
Then C 
→ ∗C defines a surjective map from P⊃b onto the Coxeter complex Pb⊥ of
the root system (b⊥, �b⊥).

Keeping the above in mind we see that any residue weight t on � induces a
residue weight ∗t on �b⊥ given by
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∗t(D) =
∑

C∈P⊃b ,∗C=D

t (C).

If b ∈ R, then the group MQ is independent of the particular choice of Q ∈ Pσ (b);
we denote it by Mb. It is invariant under both the involutions θ and σ ; moreover,
the space b⊥ is the analogue of a∗q for Mb. We denote by Pσ (Mb) the analogue of
the set Pσ for Mb. The map Q 
→ aQq defines a bijection from Pσ (Mb) onto Pb⊥ .
Let Pσ,⊃b be the collection of P ∈ Pσ with a∗Pq ⊃ b. Then the map P 
→ a∗Pq
is a bijection from Pσ,⊃b onto P⊃b. Via the mentioned bijections, we transfer the
map C 
→ ∗C described above to a surjection P 
→ ∗P from Pσ,⊃b onto Pσ (Mb).
We note that for all P ∈ Pσ,⊃b we have ∗P = P ∩ Mb. If P is a minimal element
of Pσ , then P ∈ Pσ,⊃b and ∗P is a minimal element in Pσ (Mb). We note that
�(∗P) = �(P) ∩ b⊥.

Lemma 13.6 Let P ∈ Pmin
σ , t a residue weight on �, ξ ∈ a∗q and b ∈ R. Then for

every root space c containing b we have

ResP,t
ξ+c = Res

∗P,∗t
ξb⊥+∗c.

This result is a rather straightforward consequence of the characterization of the
residual operators in Proposition 13.4. We refer to [18] for details. Taking c = b
we see that each residual operator may be viewed as a point residual operator in a
suitable Levi subspace.

Action by the Weyl Group Another crucial aspect of the residual calculus is that it
behaves well under the action of the Weyl group. The Weyl group W acts naturally on
the set of root spaces R, on the Coxeter complex P and on the collection of residue
weights WT(�). Moreover, if w ∈ W and b ∈ R, then the map w : b⊥ → w(b)⊥
naturally induces a map

w∗ : M(b⊥C, �b⊥)
∗
laur → M(wb⊥C, �wb⊥)

∗
laur.

It readily follows from the characterization in Proposition 13.4 that the residual op-
erators transform naturally for the mentioned actions of the Weyl group. Thus, let
P, t, ξ, b be as in Lemma 13.6; then

w∗ResP,t
ξ+b = ReswP,wt

wξ+wb (w ∈ W). (13.13)

Here we have written wP for the w-conjugate of P; it is given by wP = w̄Pw̄−1,
with w̄ ∈ NK (aq) a representative for w. In addition to this transformation formula
we have the following result.

Lemma 13.7 Let P ∈ Pmin
σ , t a residue weight on �, ξ ∈ a∗q and b ∈ R. Moreover,

let w ∈ W be such that w(�(P)∩b⊥) ⊂ �(P). Then the operators in (13.13) equal
ResP,wt

wξ+wb.
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Proof. The hypothesis implies that w(�(P))∩ (wb)⊥ ⊂ �(P)∩ (wb)⊥. Since both
intersections are positive systems for �wb⊥ and are nested, they are equal. Hence,
∗P = ∗(wP). Now apply Lemma 13.6 with wb in place of b. �

We now come to a result which makes the residue calculus introduced above
available in many situations. We assume that H is a locally finite collection of real
�-hyperplanes in a∗qC. We denote by L = L(H) the intersection lattice of H, i.e.,
the collection of all finite intersections of hyperplanes from H, ordered by inclusion.
The intersection of the empty collection is understood to be a∗qC.

The configuration H is said to be P-bounded from below if there exists a constant
R > 0 such that for any hyperplane of the form 〈α, λ〉 = s contained in H we have
s ≥ −R. If H is P-bounded from below, then there exists a constant M > 0 such
that for every η ∈ a∗q,

∀α ∈ �(P) 〈η, α〉 < −M �⇒ η /∈ ∪H.

Theorem 13.8 Let P ∈ Pmin
σ and let H be a locally finite collection of real �-

hyperplanes that is P-bounded from below. Then the collection � of pairs (ξ, b) ∈
a∗q ×R with ξ ∈ b⊥, ξ + b ∈ L(H) and ResP,t

ξ+b �= 0 is contained in a finite set only

depending on P,H. Moreover, for every η ∈ a∗q sufficiently P̄-dominant and each

collection of εQ ∈ a∗+Qq sufficiently close to 0 for all Q ∈ Pσ , the following holds.
For every ϕ ∈ P(a∗qC,H),∫

η+ia∗q
ϕ(λ) dλ =

∑
(ξ,b)∈�

∑
Q∈Pσ (b)

t (Q)

∫
εQ+ib

ResP,t
ξ+bϕ( · + ν) dµb(ν).

For the proof of this result we refer the reader to [18]. The εQ are sufficiently
small perturbations of 0 inside a∗+Qq; they make sure that each of the integrations is
performed over an affine space that is disjoint from ∪H, hence also from the singular
locus of the integrand.

We now fix P0 ∈ Pmin
σ and put �+ := �(P0). The associated set of simple roots

is denoted by �. For each subset F ⊂ � we denote by a∗Fq the intersection of the

root hyperplanes α⊥, for α ∈ F and by a∗+Fq the positive chamber determined by the
remaining simple roots �\ F . Then there exists a unique PF ∈ Pσ whose associated
positive chamber equals a∗+Fq. The group PF is called the standard parabolic subgroup
determined by F . In the rest of this chapter we shall adopt the convention to replace
an index PF by F . In particular, the Langlands decomposition of PF is denoted by
PF = MF AF NF , and the centralizer of aFq in W is denoted by WF .

Let W F denote the set of elements w ∈ W for which w(F) ⊂ �+. Then it is
well known that W F consists of the cosets representatives of W/WF which are of
minimal length. Moreover, the multiplication map W F × WF → W is a bijection.

It follows from the standard theory of root systems that for each P ∈ Pσ � P
there exists a unique F ⊂ � such that P is W -conjugate to PF . Moreover, there
exists a unique v ∈ W F such that P = vPFv

−1.
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Lemma 13.9 Let H be a locally finite collection of real �-hyperplanes that is P0-
bounded from below. Then for each F ⊂ � there exists a finite subset �F = �F (H)

of the closed convex cone �−(F) spanned by 0 and −F, such that the following
holds. For every W -invariant residue weight t on � the collection of elements ξ ∈
(a∗Fq)

⊥ with

ResP,t
ξ+a∗Fq

�= 0 and ∃w ∈ WF : w(ξ + a∗Fq) ∈ L(H)

is contained in �F .

Proof. For w ∈ W F , let X F,w denote the set of ξ ∈ �F with the property that
w(ξ + a∗Fq) ∈ L(H). For such ξ it follows from Lemma 13.7 that ResP,t

wξ+wb �= 0.
Hence (wξ,wb) is contained in the set � of Theorem 13.8 with P = P0. It follows
that X F,w is contained in a finite subset �F,w only depending on P0,H. Moreover,
it follows from Proposition 13.5 that for ξ ∈ X F,w we have wξ ∈ �−(�(P0) ∩
wa∗⊥Fq) = w�−(F), hence ξ ∈ �−(F). Thus, the above holds with �F,w a finite
subset of �−(F) depending only on P0 and H. Now �F may be taken to be the
union of the sets �F,w, for w ∈ W F , and the lemma follows. �

In the formulation of the following result, we use the abbreviation dµF for the
normalized Lebesgue measure dµa∗Fq

on ia∗Fq and its translates, for each F ⊂ �.

Theorem 13.10 Let t , H and the set �F be as in Lemma 13.9. Then for every η ∈ a∗q
sufficiently P̄-dominant and each collection of εF ∈ a∗+Fq sufficiently close to 0 for
all F ⊂ �, the following holds. For every ϕ ∈ P(a∗qC,H),∫

η+ia∗q

ϕ(λ) dλ =
∑
F⊂�

∑
ξ∈�F

t (PF )

∫
εF+ia∗Fq

ResP,t
ξ+a∗Fq

∑
w∈WF

ϕ(w( · + ν)) dµF(ν).

Proof. The formula can be derived from the formula displayed in Theorem 13.8
as follows. Every Q in the formula is of the form w(PF ) for a unique F ⊂ �

and a unique w ∈ W F . Moreover, (ξ, Q) ∈ � �⇒ w−1ξ ∈ �F . The desired
formula now follows by application of Lemma 13.7 and the W -invariance of the
residue weight. �

We come to the completion of the proof of the Fourier inversion theorem, which
depends on the above result in a crucial way.

Residues and Fourier Inversion As said, to complete the proof of Theorem 13.2,
it suffices to show that, for f ∈ C∞

c (X : τ), the function TηF f , defined by (13.3),
extends smoothly from X+ to all of X. In [17] this is proved by using the residue
calculus described above. For the application of the residue calculus we need the
following result, for which we refer the reader to [17].
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Proposition 13.11 The union H of the collections of singular hyperplanes of the
functions λ 
→ E∗(λ : · ) and λ 
→ E1,+(λ : · ) is a locally finite collection of real
�-hyperplanes that is P0-bounded from below.

From now on we fix H as in Proposition 13.11 above and we fix a finite set
�F ⊂ �−(F) meeting the requirements of Lemma 13.9. Moreover, we fix any
residue weight t on � that is W -invariant and in addition even, i.e., t (P̄) = t (P)

for all P ∈ Pσ .

Completion of the proof of Theorem 13.2. In view of Definition 11.10 with P = P0,
the singular locus of the meromorphic function F f is contained in ∪H as well. We
may therefore apply Theorem 13.10 with ϕ(λ) = E+(λ : x)F f (λ), where x ∈ X+,
and obtain that

TηF f (x) (13.14)

= |W |
∑
F⊂�

t (PF )

∫
εF+ia∗Fq

Rt
F [
∑

w∈W F

E+(w( · + ν) : x)F f (w( · + ν)) ] dµF (ν),

where, for each F ⊂ �, we have used the notation Rt
F for the Laurent functional in

M(a∗⊥Fq, �F )
∗
laur given by the formula

Rt
F :=
∑
ξ∈�F

ResP,t
ξ+a∗Fq

. (13.15)

For later applications it is important to note that the support of this Laurent functional
is contained in the finite set �F , which in turn is contained in the closed convex cone
�−(F) spanned by 0 and −F .

Using (13.14), (13.1) and (11.14) with P = Q = P0, we obtain that

E+(w( · + ν) : x)F f (w( · + ν)) = Ew,+( · + ν : x)F f ( · + ν)

=
∫

X
Ew,+( · + ν : x)E∗( · + ν : y) f (y) dy.

We now define the kernel function

K t
F (ν : y : x) = Rt

F

[ ∑
w∈W F

Ew,+( · + ν : x)E∗( · + ν : y)

]
, (13.16)

for y ∈ X, x ∈ X+ and generic ν ∈ a∗FqC. This kernel depends meromorphically on
the variable ν ∈ a∗FqC. After this (13.14) becomes

TηF f (x) = |W |
∑
F⊂�

t (PF )

∫
εF+ia∗Fq

∫
X

K F (ν : x : y) f (y) dy dµF (ν).

For fixed generic ν ∈ a∗FqC, the kernel function K t
F (ν : · : · ) is a smooth function

on X+ × X, with values in End(Vτ ) � Vτ ⊗ V ∗
τ . Moreover, it is spherical for the
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K × K - representation τ ⊗ τ ∗. Finally, it is D(X)-finite in both variables. It follows
that K t

F (ν : · : · ) belongs to a tensor product space of the form 1 Eν ⊗ 2 Eν , with
1 Eν and 2 Eν finite dimensional linear subspaces of C∞(X+ : τ) and C∞(X+ : τ ∗),
respectively. For each j = 1, 2, let j E ′

ν denote the subspace of functions in j Eν that
extend smoothly to all of X. Then by the symmetry property formulated in the result
below, the kernel function K t

F (ν : · : · ) belongs to the intersection of 1 E ′
ν ⊗ 2 Eν

and 1 Eν ⊗ 2 E ′
ν , which equals 1 E ′

ν ⊗ 2 E ′
ν . From this we see that K t

F (ν : · : · )
extends smoothly to all of X × X. �

Proposition 13.12 Let x, y ∈ X+. Then

K t
F (ν : x : y) = K t

F (−ν̄ : y : x)∗, (13.17)

as a meromorphic End(Vτ )-valued identity in the variable ν.

Sketch of proof. The result is proved by induction on dim aq, the split rank of X.
For dim aq = 0, the symmetric space X is compact and the result is obvious. Thus,
assume that the result has already been established for spaces of lower split rank.

We first assume that F � �. Then the equality follows from the symmetry of the
kernels for the spaces XF,v , for v ∈ FW , which are of lower split rank. The proof
of this part of the induction step is based on the principle of induction of relations,
which we shall explain in the next subsection. For now we assume that the symmetry
holds for F � � and we will show how to derive it for F = �.

We first observe that for a, b in A�q, the vectorial part of the center of G modulo
H , we have K t

�(ν : ax : by) = aνb−ν K t
�(ν : x : y). By factoring out this part we

reduce to the case that a∗�q = {0}. Suppressing the variable from this space, we put
K t

�(x : y) = K t
�(0 : x : y).

The argument in the proof of Theorem 13.2 can now be modified in such a way
that the symmetry (13.17) is only needed for proper subsets F of �. This goes as fol-
lows. The kernel K t

�( · : y) is annihilated by a cofinite ideal I of D(X), independent
of y.

The function g := f − Tη f is smooth on X+ and has support that is bounded in
X. Given F ⊂ � we write

T t
F f := |W | t (PF )

∫
εF+ia∗Fq

∫
X

K F (ν : x : y) f (y) dy dµF (ν). (13.18)

Then by the residue shift in the proof of Theorem 13.2, g = f −∑F T t
F f . Let D ∈ I .

Then Dg = D f −∑F�� T t
F f ; by application of Proposition 13.12 for F � �, as

in the final part of the proof of Theorem 13.2, the function Dg is seen to extend to
a smooth function on all of X. Its support is compact, as said above. Let now Dτ be
the differential operator of Theorem 11.27 with P = P0. Then Dτ Dg = DDτ g = 0.
It follows that Dg = 0 on X+, for each D ∈ I . This implies that the function g is
real analytic on X+, with a support that is bounded in X. By analytic continuation it
follows that g = 0, whence Theorem 13.2. At the same time it follows that T t

� f is
the smooth function on X given by
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T t
� f = f −

∑
F��

T t
F f. (13.19)

Let s0 be the longest element of W . Then for each set F � �, the set F ′ := −s0(F)

is properly contained in �. Moreover, from the symmetry of the kernels, (13.17),
combined with their definition, (13.16), the W -equivariance of the residue calculus
and the fact that the weight t is W -invariant and even, it follows that T t

F and T t
F ′ are

adjoint to each other as operators C∞
c (X : τ) → C∞(X : τ). This implies that T t

� is
symmetric, from which in turn it follows that (13.17) is valid for F = �. �

Induction of Relations In this subsection we shall describe the principle of induc-
tion of relations, as developed in [20]. The principle says that relations of a certain
type between partial Eisenstein associated with a symmetric space XF,v , for F ⊂ �

and v ∈ FW , induce relations between corresponding partial Eisenstein integrals for
the space X.

Keeping to the convention of replacing index PF by F , we have

XF,v = MF/MF ∩ vHv−1.

The space ∗aFq := a⊥Fq is the analogue of aq for the reductive pair (MF , MF ∩
vHv−1). Moreover, �F and WF are the associated root system and Weyl group,
respectively, and ∗P0 := MF ∩ P0 is the minimal σ -parabolic subgroup of MF

determined by the positive system �+
F := �F ∩ �+. Let K F = K ∩ MF and

τF := τ |K F . If t ∈ WF , we denote by

E+,t (XF,v : µ : m) ∈ Hom(◦C(XF,v, τ ), Vτ ), (µ ∈ ∗a∗FqC,m ∈ XF,v),

the analogue for the symmetric pair (MF , MF ∩ vHFv
−1) (and the parabolic sub-

group ∗P0) of the partial Eisenstein integral E+,t (X : λ : x). Here ◦C(XF,v : τ)

denotes the analogue of the space ◦C(τ ) for XF,v . Via the bijection (3.9), the nat-
ural action of W on W/WK∩H is transferred to an action on W . Accordingly, the
space ◦C(XF,v : τ) is the direct sum of the spaces C∞(M/M ∩ wHw−1 : τM ), for
w ∈ WFv, hence may be naturally embedded into ◦C(τ ), which is a similar direct
sum for w ∈ W . The natural inclusion map is denoted by iF,v; its transpose, the
natural projection map, by prF,v .

Theorem 13.13 Let Lt ∈ M(∗a∗FqC, �F )
∗
laur ⊗ ◦C(τ ) be given Laurent functionals,

for each t ∈ WF , and assume that, for every v ∈ FW ,∑
t∈WF

Lt [E+,t (XF,v : · : m) ◦ prF,v] = 0, (m ∈ XF,v,+). (13.20)

Then, for each s ∈ W F , the following meromorphic identity in the variable ν ∈ a∗FqC
is valid:
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t∈WF

Lt [E+,st (X : · + ν : x)] = 0, (x ∈ X+). (13.21)

Conversely, if for a fixed s ∈ W F the equality (13.21) holds for all ν in a nonempty
open subset of a∗FqC, then (13.20) holds for each v ∈ FW .

This result is proved in [20], Thm. 16.1. The proof in turn is based on a more
general vanishing theorem, see [20], Thm. 12.10. The vanishing theorem asserts that
a suitably restricted meromorphic family a∗FqC % ν 
→ fν ∈ C∞(X+ : τ) of eigen-

functions for D(X) is completely determined by the coefficient of aν−ρF in its asymp-
totic expansion towards infinity along A+

Fqv, for each v ∈ FW . This coefficient is a
spherical function on XF,v,+, depending meromorphically on ν. In particular, if the
coefficients, one for each v ∈ FW , are zero, then fν = 0 for all ν. This explains
the name vanishing theorem. Part of the mentioned restriction on families is the so-
called asymptotic globality condition. It requires that certain asymptotic coefficients
in the expansions of fν along certain codimension one walls have smooth behavior
as functions in the variables transversal to these walls. The precise condition is given
in [20], Def. 9.5.

We shall now indicate how the vanishing theorem is applied to prove Theorem
13.13. Let f s

ν , for s ∈ W F , denote the expression on the left-hand side of (13.21).
The sum fν = ∑s∈W F f s

ν defines a family for which the vanishing theorem holds;
the summation over W F is needed for the family to satisfy the asymptotic globality
condition mentioned above. The coefficient of aν−ρF in the expansion of fν along
A+

Fqv, for v ∈ FW , is given by the expression on the left-hand side of (13.20) with

the same v ∈ W F . By the vanishing theorem, the vanishing expressed in (13.20),
for all v ∈ W F , implies that f = 0. For each v ∈ FW , the sets of exponents
of f s

ν in the expansion along A+
Fqv are mutually disjoint for distinct s ∈ W F and

generic ν ∈ a∗FqC. Thus, the vanishing of fν implies the vanishing of each individual
function f s

ν and (13.21) follows.
The converse statement of Theorem 13.13 is proved as follows. First, the asymp-

totic globality condition connects the vanishing of distinct sets of exponents, from
which it follows that the vanishing of an individual term f s

ν implies that of fν . The
validity of (13.20) then follows by taking the coefficient of aν−ρF in the asymptotic
expansion of fν along A+

q v.

Completion of the proof of Proposition 13.12. The Laurent functional Rt
F has real

support; moreover, it is scalar, and can be shown to be real in the sense that at each
point of its support it can be represented by a string {uN } ⊂ S(∗a∗Fq) as in Definition
13.3, with uN real for all N ∈ N. Using these facts it can be shown that the adjoint
kernel in (13.17) can be expressed as

K t
F (−ν̄ : y : x)∗ = Rt

F

( ∑
s∈W F

E◦(ν − · : x)E∗
+,s(ν − · : y)

)
, (13.22)

where the dual partial Eisenstein integral is defined by
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E∗
+,s(λ : y) := E+,s(−λ̄ : y)∗.

The residue weight t on � induces a residue weight ∗t on �F . The set F is a simple
system for �F . If v ∈ FW , we denote the kernel for the space XF,v associated with
the data ∗t, F by K

∗t
F (XF,v : m : m′). In this notation the spectral parameter ν has

been suppressed, as it is zero-dimensional. The inductive hypothesis, which asserts
the symmetry of the kernels for spaces of lower split rank, implies that, for each
v ∈ FW ,

K
∗t
F (XF,v : m : m′) = K

∗t
F (XF,v : m′ : m)∗, (m,m′ ∈ XF,v). (13.23)

In view of the first part of the proof, applied to the present dual kernel, using transi-
tivity of residues, see Lemma 13.6, and taking into account that (WF )

F = {1}, the
equation (13.23) is seen to be equivalent to

Rt
F [ E+(XF,v : · : m)E∗(XF,v : · : m′) ]

= Rt
F [ E◦(XF,v : − · : m)E∗

+(XF,v : − · : m′) ].

In view of (13.16) and (13.22) the equality (13.17) can now be deduced by applying
induction of relations, Theorem 13.13, first with respect to the variable x , and then
with respect to the variable y. More details can be found in [17], Sect. 8.

14 The Proof of the Plancherel Theorem

The Generalized Eisenstein Integral We shall now give a sketch of the proof of
the spherical Plancherel theorem, Theorem 11.26, as given in [21], indicating some
of the main ideas. The starting point of the proof is the following formula, obtained
in the proof of the inversion theorem in the previous section, for f ∈ C∞

c (X : τ),

f =
∑
F⊂�

t (PF ) |W |
∫
εF+ia∗Fq

∫
X

K t
F (ν : x : y) f (y) dy dµF (ν). (14.1)

Here we recall that t is any choice of W-invariant and even residue weight on �.
The leading idea in the proof of the Plancherel theorem is to show that this formula,
initially only valid for εF ∈ a∗+Fq sufficiently close to zero for all F ⊂ �, is actually
true with εF = 0 for all F . This in turn is achieved by showing that the kernel
functions K t

F (ν : · :) are regular for imaginary values of ν ∈ a∗FqC.
The regularity of the kernels is established in the course of a long inductive ar-

gument in [21]. The nature of this inductive argument will be explained in the next
subsection. To prepare for it, we first indicate how the symmetry of the kernels leads
to the introduction of the so-called generalized Eisenstein integrals. For details we
refer to [17].

Let F ⊂ � and v ∈ FW . Using the kernel K t
F (XF,v : · : · ) defined in (13.16),

we define the following subspace of C∞
c (XF,v : τF ):

A∗t
F,v = A∗t (XF,v : τF ) := span{K ∗t

F (XF,v : · : m′)u | m′ ∈ XF,v,+, u ∈ Vτ }.
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This space is annihilated by a cofinite ideal of D(XF,v), hence is finite dimensional.
For ψ ∈ A∗t

F,v , we define the generalized Eisenstein integral E◦
F,v(ν : · )ψ as a

meromorphic C∞(X : τ)-valued function of ν ∈ a∗FqC, as follows. If

ψ =
∑

i

K
∗t
F (XF,v : · m′

i )ui ,

with m′
i ∈ XF,v,+ and ui ∈ Vτ , then

E◦
F,v(ν : x)ψ :=

∑
i

Rt
F [
∑

s∈W F

E+,s(ν + · )E∗(XF,v : · : m′
i )ui ], (14.2)

for generic ν ∈ a∗FqC and all x ∈ X+. It follows by application of Theorem 13.13
that the expression on the right-hand side of (14.2) is independent of the particular
representation of ψ , so that the definition is unambiguous.

Finally, we define the space

A∗t
F := ⊕v∈FW A∗t

F,v, (14.3)

and for ψ = (ψv) ∈ A∗t
F we define the generalized Eisenstein integral

E◦
F (ν : x)ψ :=

∑
v∈FW

E◦
F,v(ν : x)ψv.

In the course of [17] it is shown that for any choice of inner product on A∗t
F , for

which the decomposition (14.3) is orthogonal, the symmetry of the kernel K t
F , see

Proposition 13.12, implies the existence of a unique selfadjoint endomorphism αF

of A∗t
F such that

K t
F (ν : x : y) = E◦

F (ν : x) ◦ αF ◦ E◦
F (−ν̄ : y)∗.

The Inductive Argument So far, in the proof of the Fourier inversion argument, the
theory of the discrete series has played no role. However, in the inductive argument
leading up to the regularity of the kernels, this changes fundamentally, as we shall
now explain.

A reductive symmetric pair (G, H) of the Harish-Chandra class is said to be of
residue type if G has compact center modulo H and if in addition the following holds.
For any choice of W -invariant and even residue weight t , the operator T t

� defined as
in (13.18) with F = �, is required to be equal to the restriction to C∞

c (X : τ) of
the orthogonal projection Pds : L2(X : τ) → L2

d(X : τ). The second space denotes
the discrete part, see (2.20). In particular, it follows from the requirement that T t

�

is independent of the choice of residue weight. Equivalently, the latter condition
means that K t

�(x : y) is the kernel of the orthogonal projection Pds. Moreover, the
assumption straightforwardly implies that

At
�(X : τ) = L2

d(X : τ).
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In particular it follows that the space on the left-hand side is independent of the
choice of residue weight, and that the space on the right-hand side is a finite-
dimensional space which can be realized by means of point residues of Eisenstein
integrals from the minimal principal series for X. Its elements are D(X)-finite func-
tions. In view of this it also follows that L2

d(X : τ) equals A2(X : τ), the space of
D(X)-finite spherical Schwartz functions on X; see [4], Thm. 6.4, for details.

The inductive argument proceeds by induction on dim Aq, the σ -split rank of G.
Its purpose is to establish that every pair (G, H) is of residue type as soon as G has
compact center modulo H . A parabolic subgroup Q ∈ Pσ is said to be of residue
type if all pairs (MQ, MQ ∩ vHv−1) are of residue type, for v ∈ QW . A subset
F ⊂ � is said to be of residue type if the associated standard parabolic subgroup PF

is of this type.
In the course of the induction step, the induction hypothesis guarantees that each

Q ∈ Pσ different from G is of residue type. Moreover, if the center of G is not
compact modulo H , then MG = M� is of strictly smaller σ -split rank than G, so
that G, viewed as a parabolic subgroup, is of residue type as well.

We will now proceed to describe the induction step. In what follows we assume
that the occurring subset F ⊂ � is of residue type. Let v ∈ FW . Then the assump-
tion implies that

A∗t
F,v = L2

d(XF,v : τF ) = A2(X : τ).

Accordingly,
A∗t

F = A2,F := ⊕v∈FW A2(XF,v : τF )

is independent of t and may be equipped with the direct sum of the L2-inner products.
For this choice of inner product it can be shown that αF equals |WF |−1 times the
identity operator. Thus, we obtain

K
∗t
F (ν : x : y) = |WF |−1 E◦

F (ν : x)E∗
F (ν : y),

where the dual generalized Eisenstein integral is defined by

E∗
F (ν : y) = E◦

F (−ν̄ : y)∗ ∈ Hom(Vτ ,A2,F ),

for y ∈ X and generic ν ∈ a∗FqC. From the induction hypothesis that F is of residue

type, it follows that the kernels K
∗t
F (XF,v : · : · ) do not depend on t . In view of

their construction in (14.2) it follows that the generalized Eisenstein integrals do not
depend on the choice of t either.

Each parabolic subgroup from Pσ is a standard one for a particular choice of
positive roots. It follows that the notion of generalized Eisenstein integral can be
defined for every Q ∈ Pσ of residue type. More precisely, we define A2,Q as in
(11.7). For each ψ ∈ A2,Q we have an associated Eisenstein integral

E◦(Q : ν : · )ψ ∈ C∞(X : τ),

which depends meromorphically on the parameter ν ∈ a∗QqC. This in turn allows us
to define kernels by the formula
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K Q(ν : x : y) := |WQ |−1 E◦(Q : ν : x)E∗(Q : ν : y). (14.4)

The definitions are such that for F � � all objects with parameter PF coincide with
their analogues with index F .

Tempered Estimates We emphasize the observation that the Eisenstein integrals
just introduced do not enter harmonic analysis as matrix coefficients of generalized
principal series representations for X; in fact, the connection with representation
theory is only made in the final stage of the development of the theory. Instead,
the general Eisenstein integrals enter the analysis as residues of Eisenstein integrals
connected with the minimal principal series for X. This has a two-fold advantage.

First, certain moderate estimates that are uniform with respect to the parameter
ν ∈ a∗QqC are inherited from the similar estimates for minimal Eisenstein integrals,
which were established in [6], by using the functional equation for j (Q : ξ : λ)

mentioned in Remark 8.6. The minimal Eisenstein integrals are easier to handle as
they require no knowledge of the discrete series of noncompact symmetric spaces of
lower σ -split rank.

Second, the location of the asymptotic exponents of the general Eisenstein in-
tegrals is determined by the supports of the residual operators. By application of
the text following (13.15) it can be shown that the Eisenstein integrals are tempered
functions for imaginary ν.

Combining these two facts with the structure of the differential equations satisfied
by the Eisenstein integrals, see Proposition 11.7, the initial moderate estimates for
the Eisenstein integrals E◦(Q : ν : x) can be sharpened to tempered estimates that
are of a uniform nature in the parameter ν ∈ ia∗Qq. For details we refer the reader
to [21], Sect. 15. The mentioned technique of sharpening estimates goes back to
Wallach, [87]. In the formulation of the following result we use notation introduced
in the text preceding Theorem 11.16.

Theorem 14.1 There exist constants ε > 0 and s > 0 and a polynomial function
q : a∗PqC → C that is a product of linear factors of the form 〈α, · 〉 − c, with
α ∈ �(P) and c ∈ R, such that the function fν = q(ν)E◦(P : ν : · ) depends
holomorphically on ν in the region a∗PqC(ε) = {λ ∈ a∗PqC | |λ| < ε} and satisfies
the following estimates. For every u ∈ U (g) there exist constants n ∈ N and C > 0
such that

|Lu fν(x)| ≤ C (1 + |ν|)n(1 + lX(x))
n �(x) es|Reν|lX(x).

For minimal σ -parabolic subgroups this result is due to [6]; for general σ -
parabolic subgroups it was first established by [38]. Both papers rely on the same
idea, described above. First, a functional equation for the j (Q : ξ : λ) is obtained.
These yield uniform moderate estimates, which can be sharpened to uniform tem-
pered estimates. As said, the case of general parabolics is harder, since it involves
the discrete series of spaces of lower σ -split rank. The reduction of the general case
to the minimal one by means of the residue calculus is due to [21].
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The above result is absolutely crucial for the further development of the theory, as
it admits application of the theory of the constant term, developed by Harish-Chandra
[56] for the case of the group and by J. Carmona [33] for reductive symmetric spaces.
Theorems 5.4 and 5.6 on the discrete series are also indispensable ingredients of this
theory. By the mentioned theory of the constant term, one deduces that the leading
part of the asymptotic expansion of the Eisenstein integral has the form given in
Theorem 11.18. The C-functions entering this description satisfy Proposition 11.19;
this follows readily from the definition of the generalized Eisenstein integral. In the
following subsection we shall indicate how the general Maass–Selberg relations for-
mulated in Theorem 11.22 follow from those for the C-functions associated with
minimal σ -parabolic subgroups.

The Maass–Selberg Relations It is an important observation that the Maass–
Selberg relations of Theorem 11.22 can be reformulated as an invariance property
of the kernel functions.

Theorem 14.2 Let P, Q ∈ Pσ be associated parabolic subgroups and let s ∈
W (aQq | aPq). Then the following two assertions are equivalent.

(a) K Q(sν : x : y) = K P (ν : x : y), for all x, y ∈ X and generic ν ∈ a∗PqC.
(b) C◦

Q|P (s : ν)C◦
Q|P (s : −ν̄)∗ = IA2,Q , as an identity of meromorphic functions in

the variable ν ∈ a∗PqC.

Sketch of proof. Assume (a) and express the kernels in terms of Eisenstein integrals
according to (14.4). Next, substitute x = mav and y = m′bv and let a, b → ∞
in A+

Qq. Comparing the coefficients of aν−ρQ b−ν−ρQ on both sides of the equation,

for every v ∈ QW , we infer that the expression on the left-hand side of the equality
in (b) equals C◦

Q|Q(1 : sν)C◦
Q|Q(1 : −sν̄)∗, which in turn equals IA2,Q , by Propo-

sition 11.19. Thus, (b) follows. The converse reasoning is also valid, in view of the
vanishing theorem of [20], described in the text following Theorem 13.13. �

In [17] it is shown that the Weyl group invariance property of the kernel K F

follows from the similar invariance of the kernel K∅ because the residue operators
behave well with respect to the action of the Weyl group, see Lemma 13.7. In view of
Theorem 14.2 it follows that the Maass–Selberg relations for the C-functions associ-
ated with minimal σ -parabolic subgroups imply those for the C-functions associated
with general σ -parabolic subgroups. For historical comments on the proofs of these
relations, see the remarks following Theorem 11.22 as well as those following (12.3).

As said in the text preceding Theorem 11.22, the Maass–Selberg relations con-
stitute the essential step towards the regularity theorem for the Eisenstein inte-
grals, Theorem 11.8. This theorem in turn implies that the meromorphic C∞(X ×
X,End(Vτ ))-valued kernel functions ν 
→ K P (ν : · : · ), are regular on ia∗PqC, for
all P ∈ Pσ of residue type.

Conclusion of the induction We now come to the end of the induction argument.
In (13.18) one may take εF = 0 for all F ⊂ � that are of residue type, by regularity
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of the kernels. Moreover, in view of (14.4) with Q = PF it follows that, for every
f ∈ C∞

c (X : τ), and each subset F ⊂ � of residue type,

T t
F f (x) = t (PF ) [W : WF ]

∫
ia∗Fq

∫
X

E◦
F (ν : x)E∗

F (ν : y) f (y) dydµF (ν)

= t (PF ) [W : WF ] JFFF f (x).

In view of Theorem 11.16 it follows that for F of residue type, the operator T t
F maps

C∞
c (X : τ) into the Schwartz space C(X : τ). The induction hypothesis implies that

each subset F � � is of residue type, so that by application of (13.19) we see that
T t
� maps into the Schwartz space as well.

The induction step is now finished as follows. If the center of G is not compact
modulo H , nothing remains to be done. Therefore, let us assume that G has compact
center modulo H . Then it follows that T t

� is defined by means of point residues,
hence maps into a subspace of D(X)-finite functions. In the above we established
that it maps into the Schwartz space, hence it maps into A2(X : τ). By using the
action of D(X) it is easily seen that the image of JF is perpendicular to A2(X : τ),
for each F � �. This implies that T t

� is the restriction of the orthogonal projection
L2(X : τ) → L2

d(X : τ). Hence, (G, H) is of residue type and the induction is
finished. �

Now that the inductive argument has been completed, it follows that all parabolic
subgroups are of residue type, so that the results obtained under this assumption are
valid in full generality.

Completion of the Proof the Plancherel Theorem It follows from the functional
equation for the Eisenstein integral, combined with the Maass–Selberg relations for
the c-function, that JP ◦ FP depends on P ∈ Pσ through the conjugacy class of
aPq for the Weyl group W . Let 2� denote the collection of subsets of � and let ∼
be the equivalence relation on 2� defined by F ∼ F ′ if and only if aFq and aF ′q are
conjugate under W . Let F ⊂ � and let [F] denote the associated class in 2�/ ∼.
Then we have the following lemma.

Lemma 14.3 ∑
F ′∈[F]

t (PF ′) = |W (aFq)|−1.

Proof. The proof is basically a counting argument. Let P(aFq) be the set of P ∈ Pσ

with aPq = aFq. For each parabolic subgroup P ∈ P(aFq) there exists a unique
subset FP ⊂ � such that P is W -conjugate to PFP . Clearly, FP ∼ F and the map
p : P 
→ FP is surjective from P(aFq) onto [F]. For each F ′ ∈ [F], the natural
map W (aF ′q | aFq) → Pσ given by w 
→ wPFw

−1 is surjective onto the fiber
p−1(PF ′). Since the action of W (aFq) on W (aF ′q | aFq) by right composition is
simply transitive, it follows that each fiber p−1(PF ′) consists of |W (aFq)| elements.
The disjoint union of these fibers is P(aFq). By W -invariance of the residue weight
it follows that
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1 =
∑

P∈P(aFq)

t (P) =
∑

F ′∈[F]

∑
P∈p−1(F ′)

t (P) =
∑

F ′∈[F]

|W (aFq)| t (PF ′),

whence the result. �
We now observe that |W ||WF |−1|W (aFq)|−1 = [W : W ∗

F ]. By application of the
above lemma we may thus rewrite (14.1) as

f =
∑

[F]∈2�/∼
[W : W ∗

F ]JFFF f. (14.5)

In particular, this expression is independent of the choice of the residue weight t .
We can now clarify the role of the residue weight in the argumentation leading up
to (14.5). The residue weight t determines the weight by which each F ′ from [F]
contributes to the term corresponding to [F] in the summation in (14.5).

To get the full statement of Theorem 11.26 it remains to study the operators
FQ ◦ JP from S(iaPq) ⊗ A2,P to S(iaQq) ⊗ A2,Q . The key observation is that
this operator is continuous linear and intertwines the natural D(X)-module structures
of these spaces determined by µP and µQ , respectively, by Lemma 11.17. Using
Theorems 5.4 and 5.6 on the discrete series it can be deduced that the composition
FQ ◦ JP is zero unless P and Q are associated. Moreover, if P = Q, then the
composition equals

FP ◦ JP = [W : W ∗
P ]−1PW (aPq),

where PW (aPq) is the orthogonal projection from S(ia∗Pq)⊗A2,P onto the subspace
of W (aPq)-invariants, see (11.16). If we combine this with the inversion formula
(14.5), the remaining assertion of Theorem 11.26 follows.

The Relation with Representation Theory In the theory exposed above, the gen-
eralized Eisenstein integrals are obtained as residues from Eisenstein integrals as-
sociated with the minimal σ -principal series. To establish the Plancherel theorem
in the sense of representation theory the generalized Einstein integrals must still be
identified with matrix coefficients of the generalized principal series representations
defined in Section 7; we recall that the definition of these matrix coefficients for
the generalized principal series is due to [34]. For the minimal principal series it
is due to [6]. The identification of Eisenstein integrals as matrix coefficients, de-
scribed in Section 11, is established in the paper [22]. We shall briefly outline the
argument. For δ ∈ K̂ we define the representation (τδ, Vτδ ) of K as in Section
11. Thus, Vτδ = V ∗

δ ⊗ Vδ . Let δe : Vτδ → C denote the natural contraction map
v∗ ⊗ v 
→ v∗(v). Let Q ∈ Pσ , ξ ∈ X∧

Q,∗,ds. Then for generic ν we define a linear

map JQ,ξ,ν,δ : V (Q, ξ)⊗ L2(K : ξ)δ → C∞(X)δ) by the formula

JQ,ξ,ν,δ(T )(x) = δe[E◦
δ (Q : ν : x)ψT ], (14.6)

for T ∈ V (Q, ξ)⊗L2(K : ξ)δ and x ∈ X. Here the index δ on the Eisenstein integral
indicates that we have taken the Eisenstein integral for τ = τδ . Moreover, the map
T 
→ ψT from V (Q, ξ) ⊗ L2(K : ξ)δ to A2,Q is defined as in the text preceding
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Definition 11.2. If we compare this with the definition just mentioned, we see that
the function JQ,ξ,ν,δ(T ) is our candidate for the matrix coefficient (11.3).

It is readily seen that the map JQ,ξ,ν,δ is K -equivariant. We define the map

JQ,ξ,ν : V (Q, ξ)⊗ L2(K : ξ)K → C∞(X)K

by taking the direct sum of the JQ,ξ,ν,δ , for δ ∈ K̂ .

Proposition 14.4 The map JQ,ξ,ν is (g, K )-equivariant for the infinitesimal repre-
sentations associated with 1 ⊗ πQ,ξ,−ν and L .

This proposition is proved in [22] by studying left derivatives of Eisenstein inte-
grals. These can be identified with Eisenstein integrals for different K -types by an
asympotic analysis involving the use of the vanishing theorem from [20].

Keeping (11.4) in mind, we see that Proposition 14.4 allows us to define a (g, K )-
equivariant Fourier transform by transposition as follows. For f ∈ C∞

c (X)K we
define f̂ (Q : ξ : ν) ∈ V (Q, ξ)⊗ L2(K : ξ)K by

〈 f̂ (Q : ξ : ν), T 〉 =
∫

X
f (x)JQ,ξ,ν̄ (T )(x) dx,

for all T ∈ V (Q, ξ)⊗L2(K : ξ)K . By using Theorem 11.26, the Plancherel theorem
for spherical functions, combined with the relation (11.10), it is then shown that the
Fourier transform f 
→ f̂ (Q, ξ) extends to a G-equivariant partial isometry from
L2(X) to the space L2(Q, ξ) defined in (10.11). Moreover, Theorem 10.21 can be
derived from Theorem 11.26 along the lines indicated in Section 11.

Finally, at the end of [22], the Eisenstein integrals are identified as matrix coef-
ficients of the principal series. First, by application of the automatic continuity theo-
rem due to Casselman and Wallach, see [89], Thm. 11.6.7, it is shown that the map
JQ,ξ,ν extends to a continuous linear map from V (Q, ξ) ⊗ C∞(K : ξ) to C∞(X),
intertwining 1 ⊗ πQ,ξ,−ν with L . Therefore,

eve ◦ JQ,ξ,ν ∈ V (Q, ξ)
∗ ⊗ C−∞(Q : ξ : ν̄)H .

By asymptotic analysis based on the known asymptotic behavior of the Eisenstein
integral it is then shown that

eve ◦ JQ,ξ,ν(η ⊗ ϕ) = 〈ϕ, j◦(Q : ξ : ν̄)η〉,
for η⊗ϕ ∈ V (Q, ξ)⊗C∞(K : ξ). This implies that JQ,ξ,ν = MQ,ξ,−ν . Combining
this with (14.6) we obtain the equality of Definition 11.2, expressing the Eisenstein
integral as a spherical generalized matrix coefficient.

15 Appendix: Harish-Chandra’s Class of Groups

A Lie group G is said to be real reductive if its Lie algebra g is a real reductive Lie
algebra. This in turn means that g1 := [g, g] is a semisimple real Lie algebra and that



The Plancherel Theorem for a Reductive Symmetric Space 91

g = c ⊕ g1,

with c the center of g.

Definition 15.1 A Lie group G is said to belong to Harish-Chandra’s class if it is
real reductive and satisfies the following conditions.

(a) G has finitely many connected components.
(b) The image of G under the adjoint representation Ad : G → GL(gC) is contained

in the identity component of Aut(gC).
(c) The analytic subgroup G1 with Lie algebra g1 has finite center.

We shall use the abbreviation H for this class of groups. Clearly, a connected
semisimple Lie group belongs to the class H if and only if it has finite center. The
class H was introduced by Harish-Chandra [58] for a two-fold reason. First, all main
facts from the structure theory of connected semisimple groups extend to groups
of the Harish-Chandra class, as we shall indicate below. Second, Harish-Chandra’s
class behaves well with respect to a certain type of induction, see the text following
Proposition 6.10.

We shall describe those properties of groups of the Harish-Chandra class that
explain how to extend the familiar Cartan decomposition G = K exp p for connected
semisimple groups with finite center to all groups from H.

We start with some general observations, the proofs of which are not difficult.
It is readily seen that any Lie group with finitely many connected components and
abelian Lie algebra is in H. Moreover, any connected compact Lie group belongs
to H. The product of two groups from H belongs to H again. If p : G̃ → G is a
surjective homomorphism of Lie groups with finite kernel, one readily sees that G
belongs to H if and only if G̃ does.

The following facts are somewhat more difficult to establish. We shall not give
proofs here, referring to [84], pp. 192–201, instead. We assume that G belongs to H.

The first important fact is that G1 is a closed subgroup of G. We note that G1 is
connected semisimple with finite center, hence belongs to H. Let C = ker Ad. Then
Ce is a closed central subgroup of Ge with Lie algebra c. Let t be the linear span of
the kernel of exp : c → C and let v ⊂ c be a complementary linear subspace. Then
T = exp t is a maximal compact subgroup and V = exp v a maximal closed vector
subgroup of Ce, and Ce � T × V via the natural multiplication map. One readily
sees that T is the unique maximal compact subgroup of Ce. A maximal closed vector
subgroup of Ce is called a split component for G. It is readily verified that every split
component of G arises as above for some choice of v. From now on we assume a
split component V of G to be fixed.

We define X (G) to be the group of continuous multiplicative characters G → R∗
and put

◦G := ∩χ∈X (G) ker |χ |.
The idea behind this definition is that ◦G contains any compact subgroup of G, as
well as any closed connected semisimple subgroup. Moreover, it has trivial intersec-
tion with V . Taking this into account, the following result is not surprising.
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Lemma 15.2 The group ◦G belongs to H and G � ◦G × V via the natural multi-
plication map.

Corollary 15.3 Every compact subgroup of G is contained in ◦G. Moreover, every
maximal compact subgroup of ◦G is maximal compact in G.

Proof. These statements follow from the above lemma since G/◦G � V has no
compact subgroups but {1}. �

The maximal compact subgroups of ◦G, hence those of G, can be found from
those of G1.

Proposition 15.4 Let K be a maximal compact subgroup of ◦G. Then

◦G = K G1. (15.1)

Moreover, K1 := K ∩ G1 is a maximal compact subgroup of G1. Conversely, let
K1 be a maximal compact subgroup of G1 with Lie algebra k1. Then K := ◦G ∩
Ad−1(Ad(K1)) is a maximal compact subgroup of ◦G, hence of G, with Lie algebra
t + k1.

Finally, the map K 
→ K ∩ G1 sets up a bijective correspondence between the
maximal compact subgroups of G and those of G1.

From the theory of semisimple groups we now recall the fact that G1 has a maxi-
mal compact subgroup and that all maximal compact subgroups of G1 are conjugate.
Combining this with the above proposition we see that all maximal compact sub-
groups of G are conjugate by an element of G1. In fact, this statement can be refined
by using the notion of a Cartan involution.

Definition 15.5 A Cartan involution of G is an involution θ of G for which the
associated group of fixed points Gθ is maximal compact in G.

If θ is a Cartan involution of G, with fixed point group K , then clearly θ

leaves G1 invariant. Moreover, the group of fixed points of the restricted involution
θ1 = θ |G1 equals K ∩ G1, which is maximal compact in G1, so that θ1 is a Cartan
involution of G1.

Conversely, we will show that every Cartan involution θ1 of G1, with fixed point
group K1, extends to a Cartan involution θ of G. In view of Proposition 15.4, its
group of fixed points must then be the unique maximal compact subgroup of G
containing K1. To find θ we proceed as follows. Let the infinitesimal involution
associated with θ1 be denoted by the same symbol. Let

g1 = k1 ⊕ p1

be the associated infinitesimal Cartan decomposition whose summands are the +1
and −1 eigenspaces of θ1, respectively. Then G1 = K1 exp(p1), the map (k, X) 
→
k exp X being a diffeomorphism K1 × p1 → g1.
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Let K ⊂ ◦G be the unique maximal compact subgroup of ◦G with K ∩G1 = K1.
Then it follows from the Cartan decomposition for G1 combined with (15.1) that
the map K × p1 → ◦G, (k, X) 
→ k exp X is a diffeomorphism. Moreover, Ad(K )

normalizes p1. It follows that we may extend θ1 to an involution θ of ◦G by requiring
it to be the identity on K . It is now readily seen that θ is the unique extension of θ1
to a Cartan involution of ◦G.

Finally, using Lemma 15.2, we may extend θ to a Cartan involution of G by
requiring that θ(a) = a−1 for a ∈ V . This extension is not unique, since it depends
on the choice of V . There is a resulting infinitesimal Cartan decomposition g = k+p
with k = t + k1 and p = p1 ⊕ v. Moreover, on the level of the group we find that

G = K exp p,

the map (k, X) 
→ k exp X , K × p → G being a diffeomorphism. Finally, given K
as above, the map X 
→ exp X K exp(−X) defines a bijection from p1 onto the set of
maximal compact subgroups of G.
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72. V. F. Molčanov, An analog of Plancherel’s formula for hyperboloids, (Russian) Dokl.
Akad. Nauk SSSR 183 (1968), 288–291.

73. G.D. Mostow, Some new decomposition theorems for semi-simple groups, Mem. Amer.
Math. Soc. no. 14, (1955), 31–54.
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1 Introduction

This chapter contains an exposition of a Paley–Wiener theorem for reductive sym-
metric spaces, which has been proved in the joint paper [16] with Erik van den Ban.1

There are six sections. The first section is introductory, the following two deal
with Riemannian symmetric spaces, and in the final three the general case of reduc-
tive symmetric spaces is treated. For the sections on the general case certain parts
of the preceding chapter by van den Ban are used as a prerequisite, in particular
Sections 3–4 and 6–7. The chapter by van den Ban will be referred to as [B]; other
references are numbered in alphabetical order according to the list at the end of the
chapter.

1. Some of the fundamental notions and results of harmonic analysis on Rn are:

The Fourier transform f 
→ f̂ , where f ∈ L1(Rn) and

f̂ (λ) =
∫

Rn
f (x)e−λ(x) dx, λ ∈ i(Rn)∗ � iRn . (1-1)

The inversion formula

f (x) =
∫

i(Rn)∗
f̂ (λ)eλ(x) dλ, (1-2)

valid for suitably nice functions f on Rn . Here dλ is the measure on i(Rn)∗ � iRn

given by (2π)−n times Lebesgue measure on Rn .

1 The text of this chapter is based on notes that were used in a graduate course for the
European School of Group Theory in July 2001 in Luminy, France. The course consisted
of a series of six lectures, each corresponding to one section of the chapter. It is my great
pleasure to thank Jean-Philippe Anker, Pierre Torasso and Bent Ørsted for inviting me to
give the lectures and for arranging publication.
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The Schwartz isomorphism theorem, that f 
→ f̂ is a linear isomorphism of the
Schwartz spaces S(Rn) → S(i(Rn)∗), with its inverse given by (1-2).

The Plancherel theorem, that f 
→ f̂ extends to a unitary isomorphism of
L2(Rn, dx) onto L2(i(Rn)∗, dλ).

The Paley–Wiener theorem, through which the image { f̂ | f ∈ C∞
c (RN )} is

described (see details below).

The aim of this work is to discuss the generalization of these results to semisimple
symmetric spaces.

2. Let G be a Lie group, H a closed subgroup. Assume σ : G → G is an involution,
and that

(Gσ )e ⊂ H ⊂ Gσ

where Gσ = {g ∈ G | σg = g} and ( · )e =identity component.
If, in addition, G is connected semisimple, we call G/H a semisimple symmetric

space. More generally, if G is reductive, we call G/H a reductive symmetric space.
The definition of a reductive Lie group is not universal. The Lie algebra g of G

should be reductive, that is, g = [g, g] ⊕ c where [g, g] is semisimple (or zero) and
c is central in g, but the precise conditions on G, in case it is not connected, can
vary. Here we will only be dealing with groups of class H (Harish-Chandra class),
as defined in [B], Appendix.

The reason behind the term “symmetric space” is explained in [B], Section 1.

3. The Plancherel theorem for G/H (including a Schwartz inversion theorem for
K -finite functions) was established by Patrick Delorme, and simultaneously by Erik
van den Ban and myself. However, our proof depended (at that time) on one of the
steps of Delorme’s proof, called the Maass–Selberg relations. Apart from this the
methods of proof are different, and we (that is, van den Ban and I) derive a Paley–
Wiener theorem together with the Plancherel theorem. Delorme’s proof has appeared
in [21] (see the historical notes and references in [B], Section 1).

4. Examples of reductive symmetric spaces (see [B], Section 1, for more details).
4.1 Riemannian symmetric spaces. Let θ be a Cartan involution of G with cor-

responding maximal compact subgroup K . Assume that σ = θ . Then H = K and
G/H = G/K is a Riemannian symmetric space. In this case the Euclidean harmonic
analysis, as outlined above, is generalized through the work of Harish-Chandra, Hel-
gason and others. See [30] and [31]. Notice that in this case we may as well assume
G to be connected, since the nonconnectedness is captured in the division by K .

4.2 Reductive groups. Let �G ∈ H; then G = �G × �G ∈ H as well. Let
σ(g1, g2) = (g2, g1); then H is the diagonal subgroup of �G × �G and G/H � �G.
In this case the Plancherel theorem was obtained by Harish-Chandra, and a Paley–
Wiener theorem was obtained by Arthur. See [32], [36] and [3].

4.3 Real hyperbolic spaces. Let p ≥ 1, q ≥ 0 be integers. Then

{x ∈ Rp+q | x2
1 + · · · x2

p − x2
p+1 − · · · − x2

p+q = 1 }



The Paley–Wiener Theorem for a Reductive Symmetric Space 101

is a reductive symmetric space, with G = SO(p, q), H = SO(p − 1, q).

5. The wave packet transform. Consider again Rn . For a function ϕ on i(Rn)∗ of
suitable decay such that ϕ is integrable w.r.t. dλ, we define

J ϕ(x) =
∫

i(Rn)∗
ϕ(λ)eλ(x) dλ, (x ∈ Rn).

The function J ϕ on Rn is called a wave packet, because it may be viewed as a
superposition of plane waves x 
→ eλ(x) with amplitudes ϕ(λ). Accordingly, the
operator J is called the wave packet transform.

Let F denote the Fourier transform f 
→ f̂ given by (1-1). With this notation
the inversion formula (1-2) simply reads f = JF f , and the Schwartz isomorphism
theorem asserts that F maps S(Rn) bijectively onto S(i(Rn)∗) with J as its inverse.

Note that (by Fubini) J and F are symmetric w.r.t. the L2-inner products on Rn

and i(Rn)∗:

〈 f,J ϕ〉 = 〈F f, ϕ〉 (1-3)

for functions f on Rn and ϕ on i(Rn)∗ of suitable decay. Thus, with domains defined
properly, J = F∗. The fact that F is inverted by its adjoint is also expressed in the
Plancherel theorem.

6. The Paley–Wiener theorem for Rn . It follows easily from the definition of f̂ :
iRn → C that if f has compact support, then f̂ extends to a (obviously unique)
holomorphic function Cn → C, given by the same expression (1-1). This extension
is also denoted by f̂ .

For each M > 0 let PWM (Rn) denote the space of holomorphic functions ϕ on
Cn that satisfy

sup
λ∈Cn

(1 + |λ|)ke−M |Reλ||ϕ(λ)| < ∞ (1-4)

for each k ∈ N. Let PW(Rn) = ∪M>0PWM (Rn).
The Paley–Wiener theorem asserts that

F(C∞
c (Rn)) = PW(Rn).

Moreover, if f ∈ C∞
c (Rn), then F f ∈ PWM (Rn) if and only if f is supported in

the closed ball BM of radius M , centered at the origin.
The space PW(Rn) is therefore called the Paley–Wiener space for Rn .

7. Remark. The original version (by Paley and Wiener) of the theorem was essen-
tially as follows. Let n = 1. The image F(L2([−M, M])) is the set of holomorphic
functions ϕ on C such that ϕ|iR ∈ L2(iR) and supλ∈C e−M |Reλ||ϕ(λ) < ∞. This
can be derived (by means of an approximate identity) from the “modern” version for
C∞

c (R). The latter is sometimes called the Paley–Wiener–Schwartz theorem.

8. There is a topological Paley–Wiener theorem. We equip the space C∞
M (Rn) of

smooth functions supported in BM with its standard Fréchet topology, and PWM (Rn)
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with the topology given by the family of seminorms (1-4), k ∈ N, by which it also
becomes a Fréchet space. Then the Fourier transform F is a topological isomorphism
of C∞

M (Rn) onto PWM (Rn), for all M > 0. It follows that it is also a topological
isomorphism of C∞

c (Rn) onto PW(Rn), when these spaces are given the inductive
limit topologies corresponding to the unions over M (this gives the standard topology
on the former space).

9. We end this introduction by recalling the proof of the Paley–Wiener theorem for
Rn , as a preparation for the discussion of the generalization to G/H .

The fact that F maps C∞
M (Rn) into PWM (Rn) is seen from the estimate

| f̂ (λ)| ≤
∫

BM

| f (x)|e−Reλ(x) dx ≤ CeM |Reλ|.

Recall that ∂̂α f (λ) = λα f̂ (λ) for all multiindices α, and apply the estimate to this
function.

The more difficult part of the proof is surjectivity. This is based on the following

Support theorem. ϕ ∈ PWM (Rn) ⇒ suppJ ϕ ⊂ BM .

Proof Let ϕ ∈ PWM (Rn) and η ∈ Rn . By the rapid decrease of ϕ at infinity and by
the Cauchy integral theorem, the shifted integral∫

η+iRn
ϕ(λ)eλ·x dλ = eη·x

∫
iRn

ϕ(η + λ)eλ·x dλ

is independent of η, hence equal to J ϕ(x) for all η. Hence by (1-4)

|J ϕ(x)| ≤ eη·x
∫

iRn
Ck(1 + |λ|)−keM |η| dλ ≤ Ceη·x+M |η|

(choose k sufficiently large). Fix |x | > M and let η = −t x . Then η · x + M |η| =
−t |x |(|x | − M) → −∞ for t → ∞, so it follows that J ϕ(x) = 0. �

In order to finish the proof of the surjectivity of F it remains only to establish the
identity FJ ϕ = ϕ for ϕ ∈ PW(Rn). If we knew already that the restriction of ϕ to
iRn is a Schwartz function, this would of course be an immediate consequence of the
Schwartz isomorphism theorem. Indeed, the Schwartz estimates for the derivatives
of ϕ|iRn can be seen from (1-4) by means of the Cauchy formula, but we can also
proceed as follows: For the function J ϕ ∈ C∞

c (Rn) the inversion formula JF f =
f reads JFJ ϕ = J ϕ. Thus, in order to establish that FJ ϕ = ϕ we need just prove
that J is injective on the space PW(Rn). This follows easily from the surjectivity of
F on Schwartz space by means of the symmetry (1-3).

Notice that in the Euclidean case there is a symmetry between the variables x
and λ, and that as a result F and J are identical transformations (up to a sign). This
is not typical for the general case (just as it is not typical in the theory of locally
compact abelian groups).
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2 The Spherical Transform on a Riemannian Symmetric Space

Let X = G/K where G is connected semisimple and K maximal compact (cf. §1,
Ex. 4.1). Then X is a Riemannian symmetric space of noncompact type. A brief
review of the harmonic analysis on X is given in this and the following section.

Formally neither the harmonic analysis for G/K nor that for G is used in the
proof of the generalization to G/H . But naturally both cases are indispensable as
examples. The Riemannian case G/K has the advantage over the group case G that
results are much easier described, basically because there is only one series of repre-
sentations in the Plancherel decomposition (for example, there is no discrete series).
This of course is also a disadvantage from the point of view of providing good ex-
amples. Another advantage of G/K is that it is not a group, so we are not tempted to
use such a structure of the space which does not generalize to G/H .

1. The first issue is the definition of the Fourier transform. We need to generalize
the exponential functions x 
→ eλ(x), λ ∈ i(Rn)∗. These functions on Rn are char-
acterized in two ways, which are both relevant for the harmonic analysis. They are
unitary characters on the abelian group Rn , and they are joint eigenfunctions for the
differential operators ∂/∂xi , i = 1, . . . , n. As we shall see, the proper generaliza-
tions to G/K carry similar properties; they are related to representations of G, and
they are joint eigenfunctions for some fundamental differential operators.

2. Notation. To fix notation we recall some well-known decomposition theorems
for G and its Lie algebra g (see for example [33]). Let θ denote the Cartan involu-
tion of G associated with G/K , as well as the derived involution of g. The Cartan
decompositions read as

g = k ⊕ p and G = K exp p,

where k = Lie(K ) = {Y | θY = Y } and p = {Y | θY = −Y }. The map (k, Y ) ∈
K × p 
→ k exp Y ∈ G is a diffeomorphism.

Let a0 be a maximal abelian subspace of p, let �0 = �(g, a0) be the associated
system of restricted roots and �+

0 a choice of positive roots. The Iwasawa decompo-
sitions read as

g = k ⊕ a0 ⊕ n0 and G = K A0 N0

where n0 = ⊕α∈�+
0
gα and A0 = exp a0, N0 = exp n0. The map (k, a, n) ∈ K ×

A0 × N0 
→ kan ∈ G is a diffeomorphism.

Let a+0 be the positive chamber in a0 and a+0 its closure. The polar decomposition
of G is

G = K A+
0 K

where A+
0 = exp a+0 . Thus every element x ∈ X can be written x = kaK with

k ∈ K and a ∈ A+
0 . The element a of this decomposition is unique; if we required

just a ∈ A, it would be unique up to conjugation by the Weyl group W0. Moreover,
the map (k M, a) ∈ K/M0 × A+

0 
→ kaK is a diffeomorphism onto an open dense
subset X+ of X . Here M0 denotes the centralizer in K of A0.
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3. The spherical transform. We will first study the Fourier transform of functions
on X that are K -invariant, i.e., functions that satisfy f (kx) = f (x) for all k ∈ K ,
x ∈ X . Obviously such a function can be identified with a K -biinvariant function
on G. We denote by C(X : 1) the space of continuous K -invariant functions on X .
Other functions spaces, e.g., C∞

c (X : 1), L2(X : 1) are defined similarly.
Here the number 1 indicates the trivial representation of K . The spaces C(X :

τ) etc. are defined for any finite-dimensional representation (τ, Vτ ) of K , and they
consist of functions f : X → Vτ that are τ -spherical, i.e., which satisfy f (kx) =
τ(k) f (x).

In the context of K -invariant functions on X , the proper generalization of x 
→
eλ(x) is Harish-Chandra’s (elementary) spherical function φλ ∈ C∞(X : 1), the
definition of which we recall. Let

ρ0 = 1

2

∑
α∈�+

0

dim(gα)α ∈ a∗0

as usual. For λ in the complex dual a∗0C we denote by 1λ the function

nak 
→ aλ+ρ0 = e(λ+ρ0)(log a)

on G, defined by means of the Iwasawa decomposition. In other words, if H : G 
→
a0 denotes the Iwasawa projection kan 
→ log a, then

1λ(x) = e−(λ+ρ0)H(x−1).

Obviously, 1λ is right K -invariant, hence may be viewed as a function on X . Now

φλ(x) =
∫

K
1λ(kx) dk =

∫
K

e−(λ+ρ0)H(x−1k) dk (2-1)

for x ∈ X .
By definition the spherical transform of a K -invariant function f on X is the

function

F f (λ) =
∫

X
f (x)φ−λ(x) dx (2-2)

on the imaginary dual ia∗0 of a0. The integral converges if f ∈ L1(X : 1) since φλ is
bounded for λ ∈ ia∗0 (as can be seen from (2-1)). Moreover, if f has compact support
the definition extends to λ ∈ a∗0C.

See Helgason’s book [30] and/or [24] for the details about this transform. Here
we will just review the main results. The notation used in these notes differs from
that used in [30], in the respect that the latter uses Harish-Chandra’s parametrization
of the spherical functions, in which (2-1) is replaced by

φHC
λ (x) =

∫
K

e−(iλ+ρ0)H(x−1k) dk = φiλ(x).
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4. Representation theory. The above definition of the spherical transform is moti-
vated by representation theory. Let λ ∈ a∗0C and let π1,λ denote the representation of
the spherical principal series with this parameter. That is, its representation space is
the completion of the space of continuous functions f : G → C which satisfy

f (manx) = aλ+ρ0 f (x)

for all m ∈ M0, a ∈ A0, n ∈ N0, x ∈ G, with norm

‖ f ‖2 =
∫

K
| f (k)|2 dk

and G-action
π1,λ(g) f (x) = f (xg).

It is easily seen that π1,λ is unitary if λ is imaginary. This construction of the repre-
sentation π1,λ is a special case of a more general construction of induced representa-
tions πξ,λ to which we will return (see [32], Ch. 7, or [B], Sect. 7).

The representation π1,λ is irreducible if 〈λ, α〉 �= 0 for all α ∈ � (Bruhat’s
theorem, see [32], Thm. 7.2. See also [31], p. 531–532).

Notice that the function 1λ belongs to the representation space for π1,λ. More-
over, it is a K -fixed vector for this representation, and in fact, it is uniquely de-
termined (up to scalar multiples) by this property. The spherical function φλ is the
matrix coefficient

φλ(x) = 〈π1,λ(x)1λ | 1λ〉. (2-3)

The relevance of such matrix coefficients for harmonic analysis on groups is well
known (see for example [23], Thm. 3.20). The harmonic analysis on homogeneous
spaces is discussed from an abstract point of view in [B], Sect. 2. Here we will just
notice that (2-3) corresponds to the following relation for the function eλ(x) on Rn ,
λ ∈ (Rn)∗C. Let πλ denote the one-dimensional representation x 
→ eλ(x) of Rn on
C, which is unitary if λ is imaginary. Then eλ(x) = 〈πλ(x)1 | 1〉.
5. Invariant differential operators. The definition of the spherical functions is also
motivated by the following considerations. Let D(X) denote the space of invariant
differential operators on X = G/K (cf. [B], Def. 2.3). This is known to be a commu-
tative algebra, which is isomorphic to the algebra I (a0) = S(a)W0 of W0-invariants
in the symmetric algebra S(a). Here W0 is the Weyl group associated with �0. The
isomorphism

γ0 : D(X) → I (a0),

called the Harish-Chandra isomorphism, is constructed as follows (see [28], Thm.
4.2). Let

r : U(g)K /U(g)K ∩ U(g)kC → D(X)

denote the isomorphism described in [B], Lemma 2.5. By the Iwasawa decomposi-
tion of g and the Poincaré–Birkhoff–Witt theorem we have
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U(g) = (n0CU(g)+ U(g)kC)⊕ U(a0).

For D = r(u) ∈ D(X) let u0 ∈ U(a0) be the projection of u according to this
decomposition. Then γ0(D) ∈ S(a0) � P(a∗0) is given by γ0(D, ν) = u0(ν + ρ0).

It follows from this description of γ0 that the function 1λ on X satisfies the
eigenequation

D1λ = γ0(D, λ)1λ (2-4)

for all D ∈ D(X). Indeed, the identity D1λ(aK ) = γ0(D, λ)1λ(aK ) for a ∈ A0
follows easily, and this is sufficient since each side of (2-4) is N0-invariant from the
left by the G-invariance of D.

It follows immediately from (2-1) and (2-4) that

Dφλ = γ0(D, λ)φλ (2-5)

for all D ∈ D(X). Thus, the spherical functions are joint eigenfunctions for the
invariant differential operators. In fact, they are uniquely characterized in C∞(X : 1)
by this property, together with the normalization given by φλ(e) = 1, cf. [30], p. 402,
Cor. 2.3.

The analog of D(X) for Rn is the algebra of all constant coefficient differential
operators, which is generated by ∂/∂xi , i = 1, . . . , n. Therefore (2-5) confirms that
the spherical functions are reasonable analogs of the exponential functions on Rn .

6. Functional equation. It is important to notice that the spherical functions satisfy
the equation

φsλ = φλ (2-6)

for all s ∈ W0. By the statement above that (2-5) determines φλ uniquely, this follows
immediately from the fact that γ0(D) is W0-invariant. However, the latter fact is
traditionally proved exactly by means of the functional equation (2-6), so another
proof must be given. See [30], p. 303, Thm. 5.16 or [32], Prop. 7.15 (in [24], Thm.
2.6.7, there is an independent proof of the Weyl invariance of γ0(D)).

It follows that the spherical transform of any function f will satisfy F f (sλ) =
F f (λ). Obviously this relation has to be taken into account when we want to de-
scribe image spaces for the Fourier transform.

7. Asymptotics. In order to proceed with our description of the K -invariant har-
monic analysis on G/K we need to introduce Harish-Chandra’s c-function. It is
defined by the equation

c(λ) =
∫

N̄0

e−(λ+ρ0)H(n̄) dn̄

for λ ∈ a∗0C with strictly dominant real part, under which assumption the integral can
be shown to converge, and by meromorphic continuation for general λ. In fact, there
is an explicit formula for c(λ) known as the Gindikin–Karpelevič formula (see [30],
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p. 447, Thm. 6.14). The important property of the c-function is that it is related to
the asymptotic behavior of the spherical function φλ. The relevant formula is Harish-
Chandra’s asymptotic expansion

φλ(a) =
∑

s∈W0

c(sλ)�sλ(a), (a ∈ A+
0 ), (2-7)

where �λ(a) is given by a series expansion

�λ(a) = aλ−ρ0
∑

µ∈N�+
0

a−µ�µ(λ)

with coefficients �µ(λ) that are rational functions of λ given by a recursive rela-
tion (see [30], p. 430, Thm. 5.5). Moreover, �0(λ) = 1. The expression �λ(a) is
meromorphic as a function of λ, and its singular set is contained in the union of all
hyperplanes of the form

{λ ∈ a∗0C | 〈2λ− µ,µ〉 = 0}

where µ ∈ N�+
0 \ {0}. In particular, it is regular for all λ that belong to

a∗0(0) := {λ ∈ a∗0C | Re〈λ, α〉 ≤ 0 for all α ∈ �+
0 }.

8. Maass–Selberg relations. It can be seen from the Gindikin–Karpelevič product
formula that the c-function satisfies the following important transformation property
for the Weyl group

c(sλ)c(−sλ) = c(λ)c(−λ) (2-8)

for all λ ∈ a∗0C, s ∈ W0. Indeed, the product formula allows reduction to rank one,
in which case the statement is trivial since sλ = ±λ.

In particular, since c(λ) = c(λ) it follows that |c(sλ)| = |c(λ)| for λ ∈ ia∗0. From
(2-7) it is seen that asymptotically

φλ(a) � a−ρ0
∑

s∈W0

c(sλ)asλ,

for λ ∈ ia∗0. The consequence of (2-8) is thus that the terms in this sum (the “constant
term” of φλ) are uniformly weighted.

The generalizations of (2-8) to G/H are the so-called Maass–Selberg relations
(see [B], Thm. 11.22).

9. Gangolli’s estimate. The following estimate of the function �λ on A+
0 can be

shown to hold (it follows from [30], p. 430, Lemma 5.6). Fix ε > 0. There exist a
constant C > 0 such that

|�λ(a)| ≤ CaReλ−ρ0

for all λ ∈ a∗0(0) and all a ∈ A+
0 with α(log a) > ε for each α ∈ �+

0 .
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10. The inversion formula for the spherical transform reads

f (x) = c
∫

ia∗0
F f (λ)φλ(x)

dλ

|c(λ)|2 , (2-9)

for f ∈ C∞
c (X : 1). Here dλ is Lebesgue measure on ia∗0, and c is a positive constant

that depends on the normalization of the involved measures. In what follows we
assume that c = 1 (see [30], pp. 488, 589, for the explicit determination of c with
some given normalizations). The integral in (2-9) converges absolutely.

The proof will be discussed below, see 16.

11. The Plancherel theorem. The spherical transform f 
→ F f extends to a uni-
tary isomorphism

L2(X : 1) → L2(ia∗0,
dλ

|c(λ)|2 )
W0 .

12. The Paley–Wiener theorem. For M > 0 let PWM (X : 1) denote the space of
holomorphic functions ϕ on a∗0C that satisfy

(a) supλ∈a∗0C
(1 + |λ|)ke−M |Reλ||ϕ(λ)| < ∞ for each k ∈ N.

(b) ϕ(sλ) = ϕ(λ) for s ∈ W0.

Let PW(X : 1) = ∪M>0PWM (X : 1).

The Paley–Wiener theorem asserts that

F(C∞
c (X : 1)) = PW(X : 1)

and that if f ∈ C∞
c (X : 1), then f is supported in the ball

BM = {x ∈ X | |x | ≤ M}

of radius M if and only if F f ∈ PWM (X : 1). Here |x | is defined for elements
x = kaK ∈ X by

|x | = | log a|,
which is exactly the Riemannian distance between x and the origin.

13. The Schwartz space C(X). In order to discuss the isomorphism theorem for
the Schwartz space on X we first have to introduce this space. By definition C(X) is
the space of functions f ∈ C∞(X) for which

∀u ∈ U(g) ∀n ∈ N ∃C > 0 ∀x ∈ G :

|Lu f (x)| ≤ C(1 + |x |)−nφ0(x).

This definition is of course motivated by analogy with the Euclidean Schwartz space,
and only the presence of the spherical function φ0 has to be explained. Here we have
to recall the formula for the polar decomposition of the invariant measure on X (see
[30], p. 186, Thm. 5.8)
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X

F(x) dx =
∫

K

∫
A+

0

F(kaK )J (a) da dk

where J (a) = ∏α∈�+
0
(aα − a−α)dim gα

. Since the order of magnitude of J (a) is

a2ρ0 , the function f (a) has to decay more than a−ρ0 in order to be square integrable.
This is essentially the decay rate of φ0, which satisfies the estimates

a−ρ0 ≤ φ0(a) ≤ C(1 + |a|)da−ρ0

for suitable constants C and d (see [30], p. 483, exercise B1). In fact, it was shown by
Harish-Chandra that if f ∈ C∞(X), then f ∈ C(X) if and only if (1 + | · |)n Lu f ∈
L2(X) for all u, n as above (see [5], Section 17).

The space of K -invariant functions in C(X) is denoted by C(X : 1) in accordance
with previous conventions.

14. Wave packets. In analogy with §0, 5, and with a glance at (2-9) we define wave
packets on X as follows:

J ϕ(x) =
∫

ia∗0
ϕ(λ)φ−λ(x)

dλ

|c(λ)|2 (2-10)

for amplitude functions ϕ on ia∗0 of suitable decay.
It follows from the Gindikin–Karpelevič formula that the c-function satisfies the

estimate

|c(λ)|−1 ≤ C(1 + |λ|)p (2-11)

for all λ ∈ a∗0C with Re〈λ, α〉 ≥ 0 for α ∈ �+
0 . Here p = (1/2) dim N0 (see [30],

p. 450, Prop. 7.2). Hence the integral in (2-10) converges for all functions ϕ on ia∗0
with
∫
(1 + |λ|)2p|ϕ(|λ)| dλ < ∞, in particular for ϕ ∈ PW(X : 1) and ϕ ∈ S(ia∗0).

Moreover, J ϕ ∈ C∞(X).
As in §1.5 it follows from the Fubini theorem that J is adjoint to F , with respect

to dx on X and dλ/|c(λ)|2 on ia∗0.

15. The Schwartz isomorphism theorem can now be stated. It asserts that the
spherical transform f 
→ F f is a linear isomorphism

C(X : 1) → S(ia∗0)W0

with inverse J . Here S(ia∗0) denotes the classical Schwartz space on Euclidean ia∗0,
and superscript W0 indicates the subspace of W0-invariants.

16. About proofs. Theorems 10, 11, 15 are due to Harish-Chandra. Most of his
proof is in [25], but two conjectures remained (see the end of the second article). One
of these was settled by the Gindikin–Karpelevič formula, the other is the injectivity
of the Fourier transform f 
→ F f on C(X : 1). This injectivity was established by
Harish-Chandra’s theory of the discrete series [26], see the second article, §21.
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Theorem 12 is due to Helgason and Gangolli. The original proof relied on Harish-
Chandra’s theory, but it was observed by Rosenberg [34] that Theorems 10-12 can
be proved simultaneously. A brief sketch is presented below; details can be found in
[30], Ch. IV,7 or [24], §6.6. Finally, Anker [2] has given a simple proof of Theorem
15.

17. The support theorem. Pseudo-wave packets. The first step in the Helgason–
Rosenberg proof consists of establishing the support theorem:

ϕ ∈ PWM (X : 1) ⇒ suppJ ϕ ⊂ BM .

The proof of this statement is entirely similar to the classical proof in §1.9, once the
following formula (2-12) has been established.

If we insert the expansion (2-7) in (2-10) and pass the integral under the sum, it
follows that

J ϕ(a) =
∑

s∈W0

∫
ia∗0

ϕ(λ)c(sλ)�sλ(a)
dλ

|c(λ)|2 ,

Assume that ϕ is W0-invariant. Then by invoking (2-8) and the W0 invariance of dλ
we obtain for a ∈ A+

0 the following formula for the wave packet

J ϕ(a) = |W0|
∫

ia∗0
ϕ(λ)�λ(a)

dλ

c(−λ)
. (2-12)

The expression on the right resembles a wave packet, but the functions �λ are not
true “waves”. Therefore, it is called a pseudo-wave packet.

For the proof of the support theorem, the integral in the pseudo-wave packet is
shifted in the direction of the negative chamber, in which we have control of �λ(a)
by means of Gangolli’s estimate. Thus one obtains that J ϕ(a) = 0 for all a ∈ A+

0
with |a| > M .

18. The main step of Rosenberg’s argument consists of proving the inversion for-
mula (2-9) that JF = 1 on C∞

c (X : 1). It is done by a stunningly simple argument,
which exploits the idea of a classical proof of the Plancherel theorem for Rn , the
dilation ψ(ελ) of an auxiliary function ψ(λ) on ia∗0. The support theorem is used to
estimate J [ψ(ε · )]. Invoked is also a delicate use of the estimate (2-11)—the fact
that p = (1/2) dim N0 is crucial. See [34] or [30], p. 455–457.

19. The Paley–Wiener theorem can now be proved. It is not difficult to see that F
maps C∞

c (X : 1) into PW(X : 1), hence the surjectivity remains, or equivalently, the
identity FJ = 1 on PW(X : 1). The proof (due to Helgason) invokes the convolu-
tion structure of C∞

c (X : 1), by which F(C∞
c (X : 1)) becomes an algebra to which

Stone–Weierstrass can be applied. The inversion formula is used in the argument.

20. The Plancherel theorem now follows easily. The identity ‖F f ‖ = ‖ f ‖ is seen
as follows for f ∈ C∞

c (X : 1), using the inversion formula JF = 1 and the fact
that J is adjoint to F :

‖ f ‖2 = 〈 f, f 〉 = 〈 f,JF f 〉 = 〈F f,F f 〉 = ‖F f ‖2.
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Hence F extends to an isometry of L2(X : 1) into L2(ia∗0). The surjectivity onto
L2(ia∗0)

W0 follows easily from Paley–Wiener surjectivity.

21. Finally the Schwartz isomorphism theorem can be proved by Anker’s argument.
It is not difficult to see that F maps C(X : 1) continuously into S(ia∗0)W0 , or that
J maps S(ia∗0)W0 continuously into C∞(X : 1). Thus the identity JF = 1 on
C(X : 1) follows from C∞

c (X : 1) by continuity. The main difficulty is that J
maps S(ia∗0)W0 into C(X : 1). Anker proves this by establishing the continuity of
J : PW(X : 1) → C∞

c (X : 1) in the Schwartz topologies. The Paley–Wiener
theorem is used in the argument.

3 Other Fourier Transforms on Riemannian Symmetric Spaces

The Plancherel theorem for K -invariant functions on X = G/K is sufficiently rich
that it implies the decomposition of the regular representation of G on the full L2-
space on X . This is closely related to the fact that (G, K ) is a Gel’fand pair, that is,
the convolution algebra Cc(G/K : 1) is commutative. For details, see [24], §1.6.

However, with the generalization to symmetric pairs (G, H) that are not Gel’fand
pairs in mind, it is instructive to see how the theory of the previous section can be
generalized to functions on G/K that are not necessarily K -invariant. Several aspects
of the general theory, which are not present in the K -invariant setting, are revealed
when we consider more general functions on G/K . For example, the Maass–Selberg
relations for the c-functions are much closer to the form they will have in general.

We will give two definitions of Fourier transforms, one which is most convenient
for K -finite functions, and another one for general functions. The main reference for
both is Helgason’s book [31], Ch. III. In order to distinguish the two transforms, we
denote them differently, by f 
→ F f and f 
→ f̃ , respectively.

1. Eisenstein integrals. The τ -spherical transform. The definition (2-1) of the
spherical function φλ is generalized as follows. Let (τ, Vτ ) be a finite-dimensional
unitary representation of K , and let V M0

τ be the space of M0-fixed vectors in Vτ . For
λ ∈ a∗0C, ψ ∈ V M0

τ and x ∈ X we define

E(ψ : λ : x) =
∫

K
1λ(kx)τ (k−1)ψ dk (3-1)

=
∫

K
e−(λ+ρ0)H(x−1k)τ (k)ψ dk.

Then E(ψ : λ) maps X → Vτ , and it is seen that

E(ψ : λ : kx) = τ(k)E(ψ : λ : x),

so that E(ψ : λ) ∈ C∞(X : τ) (see §2.3). Obviously the map

E(λ : x) : ψ 
→ E(ψ : λ : x)
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is linear V M0
τ → Vτ . The Hom(V M0

τ , Vτ )-valued function E(λ) on X is called a
generalized spherical function, or an Eisenstein integral on X (see [31], p. 233).

It is worthwhile to notice that Kostant has shown that if G/K has rank one, then
(K , M0) is a Gel’fand pair (see [31], p. 192). It follows that dim V M0

τ = 1 (for τ

irreducible). However, for general Riemannian symmetric spaces the dimension can
be higher.

The corresponding integral transform F , called the τ -spherical transform, can
be defined as follows. It maps τ -spherical functions on X to V M0

τ -valued functions
on ia∗0. Let f : X → Vτ be τ -spherical (see §2.3). Then

F f (λ) =
∫

X
E(−λ̄ : x)∗ f (x) dx ∈ V M0

τ (3-2)

where
E(λ : x)∗ : Vτ → V M0

τ

denotes the adjoint of E(λ : x) with respect to the Hilbert space structure of Vτ and
its subspace V M0

τ . It follows immediately from (3-1) that

‖E(ψ : λ)(x)‖ ≤ φReλ(x)‖ψ‖

for all λ, hence it is a bounded function on X for all λ ∈ ia∗0. Thus definition (3-2)
makes sense for f ∈ L1(X : τ), λ ∈ ia∗0. If f has compact support, we define F f (λ)
for all λ ∈ a∗0C also by (3-2). It is then a holomorphic function of λ.

If (τ, Vτ ) is the trivial representation then Vτ = V M0
τ = C and

E(λ, x) = φλ(x).

Since φλ(x) = φλ̄(x) we have E(−λ̄ : x)∗ = φ−λ(x), and hence (3-2) generalizes
the spherical transform.

2. K -finite functions. The principal reason for introducing the notion of τ -spherical
functions is that it is a convenient framework for the analysis of K -finite functions.
The relation between τ -spherical functions and K -finite functions will now be de-
scribed.

Let δ ∈ K̂ , and let C(X)δ denote the space of functions f on X that are K -finite
of type δ (i.e., the span of the K -translates of f is finite dimensional and equivalent
to δ ⊕ · · · ⊕ δ.)

Put Vτ = V ∗
δ ⊗ Vδ � Hom(Vδ, Vδ) and τ = δ∗ ⊗ 1, that is, τ(k)a = a ◦ δ(k−1)

for a ∈ Hom(Vδ, Vδ). By applying the contraction V ∗
δ ⊗ Vδ → C (or the trace on

Hom(Vδ, Vδ)) to functions in C(X : τ) we obtain a linear map

C(X : τ) → C(X)δ.

It is not difficult to show that this map is an isomorphism, the inverse of which is the
sphericalization given by f 
→ f sph ∈ C(X : τ) where
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f sph(x) = dim(δ)

∫
K

f (kx)δ(k) dk ∈ Hom(Vδ, Vδ)

(compare [30], p. 397). Similar considerations hold for C∞(X), C∞
c (X), L2(X), etc.

Therefore, the study of τ -spherical functions on X , where τ = δ∗ ⊗ 1, is essentially
equivalent with the study of K -finite functions of type δ.

On the other hand, for a general (finite dimensional) K -representation τ we can
map τ -spherical functions to K -finite ones by taking inner products with a fixed
element v ∈ Vτ .

Note: The δ-spherical transform defined on C∞
c (X)δ∗ in [31], p. 284, essentially

agrees with our τ -spherical transform (3-2) by the isomorphism described above, δ
replaced by δ∗.

3. The Fourier transform. A Fourier transform for (scalar) functions on X , which
are not necessarily K -finite, has been introduced by Helgason. It is defined as fol-
lows, say for f ∈ C∞

c (X),

f̃ (λ) = π1,−λ( f )1−λ =
∫

X
f (x)π1,−λ(x)1−λ dx (3-3)

for λ ∈ a∗0C. The integral has values in the Hilbert space H1,λ, the representation

space for π1,λ. Thus f̃ (λ) is the function given by

f̃ (λ, g) =
∫

x
f (x)1−λ(gx) dx =

∫
X

f (x)e(λ−ρ0)H(x−1g−1) dx,

and it satisfies f̃ (λ,mang) = a−λ+ρ0 f̃ (λ, g). Moreover, the map f 
→ f̃ (λ) is a
G-homomorphism

L̃ y f (λ) =
∫

X
f (y−1x)π1,−λ(x)1−λ dx = π1,−λ(y) f̃ (λ) (3-4)

for y ∈ G. In this respect the Fourier transform f 
→ f̃ is superior to the spherical
transforms, simply because G does not act on C(X : τ).

As all functions in H1,λ, the function g 
→ f̃ (λ, g) is uniquely determined by its
restriction to K . For k ∈ k we have

f̃ (λ, k) =
∫

X
f (x)e(λ−ρ0)H(x−1k−1) dx

which is Helgason’s definition (cf. [31], p. 223), except that he has iλ instead of λ

and k instead of k−1. We view k 
→ f̃ (λ, k) as a function on left cosets M0k ∈ B =
M0\K .

In particular, if f is K -invariant, then f̃ (λ, k) does not depend on k, and using
Fubini it is easily seen that

f̃ (λ, k) = F f (λ),
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so that f 
→ f̃ reduces to the spherical transform. By a similar argument it can be
seen that if f ∈ Cc(X : τ) for some K -representation (τ, Vτ ), and F(x) = 〈 f (x), v〉
where v ∈ Vτ , then

F̃(λ, k) = 〈F f (λ), τ (k)v〉. (3-5)

Here F is the τ -spherical transform.

4. Fourier inversion formula. Let f ∈ C∞
c (X). Then

f (x) =
∫

ia∗0

∫
K

f̃ (λ, k)e(−λ−ρ0)H(x−1k−1) dk
dλ

|c(λ)|2 (3-6)

=
∫

ia∗0
〈 f̃ (λ), π1,−λ(x)1−λ〉 dλ

|c(λ)|2 . (3-7)

The proof is a rather simple reduction to the spherical case, (2-9). It is based on
the observation that it follows from (3-4) and the unitarity of π1,λ, λ ∈ ia∗0, that (3-7)
is equivariant for the left action of G on x , so that we may assume x = e. At this
point the formula reads as

f (e) =
∫

ia∗0
〈 f̃ (λ), 1−λ〉 dλ

|c(λ)|2 .

Since

〈 f̃ (λ), 1−λ〉 = 〈π1,−λ( f )1−λ, 1−λ〉 =
∫

X
f (x)φ−λ(x) dx

by (2-3), the formula then follows from the spherical inversion formula for x 
→∫
K f (kx) dk.

5. τττ -spherical wave packets are defined as follows. Let ϕ : ia∗0 → V M0
τ (of suitable

decay) and put

J ϕ(x) =
∫

ia∗0
E(λ : x)ϕ(λ)

dλ

|c(λ)|2 ,

for x ∈ X – recall that E(λ : x) ∈ Hom(V M0
τ , Vτ ). Then J ϕ is a τ -spherical

function on X . Note that (by Fubini) J and F are symmetric with respect to dx on
X and dλ/|c(λ)|2 on ia∗0:∫

X
〈 f (x),J ϕ(x)〉 dx =

∫
ia∗0

〈F f (λ), ϕ(λ)〉 dλ

|c(λ)|2

where f is τ -spherical (and both ϕ and f are of suitable decay). The inner products
are those on Vτ and V M0

τ , respectively.

6. Inversion of the τττ -spherical transform. For f ∈ C∞
c (X : τ) the following

inversion formula is now easily deduced by applying (3-6) to F(x) = 〈 f (x), v〉 for
each v ∈ Vτ , cf. (3-5),
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f = JF f.

Notice the roundabout way to this result. It was first proved for K -invariant functions,
but in order to generalize to τ -spherical functions we needed the inversion formula
without the assumption of K -finiteness. The reason was that the G-equivariance can-
not be employed on functions of a fixed K -type.

Of course, alternatively we might have attempted to prove the τ -spherical in-
version formula immediately from the outset; the general formula (3-6) would then
follow by density of the K -finite functions. This is the road that will be taken for
G/H .

7. The Plancherel theorem. Let H denote the Hilbert space of L2(B) = L2(M0\K )-
valued functions on ia∗0, which are square integrable with respect to the measure
dλ/|c(λ)|2,

H = L2
(

ia∗0, L2(B),
dλ

|c(λ)|2
)
.

The Fourier transform f 
→ f̃ extends to an isometry from L2(G/K ) into H, inter-
twining L with the representation π on H given by

π(x)ϕ(λ) = π1,−λ(x)ϕ(λ) ∈ L2(B)

for almost all λ.
Indeed, the L2 identity ‖ f ‖ = ‖ f̃ ‖ is easily seen for f ∈ C∞

c (X) by insertion
of (3-7) in place of the first appearance of f (x) on the right-hand side of ‖ f ‖2 =∫

X f (x) f (x) dx (use Fubini).

8. The functional equation for the Eisenstein integrals is more complicated than
that for the spherical functions, (2-6). It involves the c-functions, which are deter-
mined through the following statement.

There exist unique meromorphic functions

a∗0C % λ 
→ C(s : λ) ∈ Hom(V M0
τ , V M0

τ )

for s ∈ W0 such that for λ ∈ ia∗0 and ψ ∈ V M0
τ :

E(λ : a)ψ �
∑

s∈W0

asλ−ρ0C(s : λ)ψ,

asymptotically as a → ∞ in A+
0 (see [31], p. 240, Thm. 2.7 for a more precise

statement, analogous to (2-7)). In particular (see [31], p. 245, (51))

C(1 : λ) = c(λ)I

where c(λ) is the c-function of the previous section, and I is the identity operator on
V M0
τ .

The functional equation now reads (see [31], p. 247; in the relation stated there
replace λ by s−1λ and change s to s−1):
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E(sλ) ◦ C(s : λ) = c(sλ)E(λ).

A reasonable argument for this relation comes from the observation that the coef-
ficient to asλ−ρ0 in the asymptotic expansion is the same on both sides. The proof,
however, is more complicated and involves the standard intertwining operators.

The following relation follows immediately:

C(s : −λ̄)∗F f (sλ) = c(−sλ)F f (λ) (3-8)

for τ -spherical functions f .

9. Maass–Selberg relations. These were derived by Harish-Chandra in the general
case of functions on G that are K -spherical on both sides (these are the τ -spherical
functions in the group case), [27]. With the trivial K -type on the right side one ob-
tains the Maass–Selberg relations for K -spherical functions on G/K . For this case
the relations are established in [29], see [31], p. 273.

The statement is that the operator C(s : λ) ◦ C(s : −λ̄)∗ is the same for all
s ∈ W0, hence equal to its value for s = e,

C(s : λ) ◦ C(s : −λ̄)∗ = c(λ)c(−λ).

The proof is by reduction to rank one, in which case everything is simplified because
dim V M0

τ = 1.
Using these relations we can rewrite (3-8) as

F f (sλ) = c(sλ)−1C(s : λ)F f (λ). (3-9)

10. The τττ -spherical Plancherel theorem. The τ -spherical transform extends to
an isometry of L2(X : τ) onto the subspace of L2(ia∗0) ⊗ V M0

τ consisting of the

functions ϕ : ia∗0 → V M0
τ that satisfy

ϕ(sλ) = c(sλ)−1C(s : λ)ϕ(λ) (3-10)

for each s ∈ W0 .

11. The τττ -spherical Paley–Wiener theorem. For each M > 0 let PWM (X : τ)

denote the space of holomorphic functions ϕ : a∗0C → V M0
τ that satisfy

(a) supλ∈a∗0C
(1 + |λ|)ke−M |Reλ|‖ϕ(λ)‖ < ∞ for each k ∈ N.

(b) (3-10) for each s ∈ W0.

Let PW(X : τ) = ∪M>0PWM (X : τ).

Then
F(C∞

c (X : τ)) = PW(X : τ)

and if f ∈ C∞
c (X : τ), then f is supported in the ball

BM = {x ∈ X | |x | ≤ M}
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if and only if F f ∈ PWM (X : τ) (see [31], Thm. 5.11, p. 285).

12. We refer to [31] for the statements of the corresponding results describing the
image of L2(X) and C∞

c (X) under the Fourier transform f 
→ f̃ (resp. Thm. 1.5, p.
227, and Thm. 5.1, p. 270). Basically these statements are analogous to those above,
once the proper functional equation relating f̂ (sλ) to f̂ (λ) has been described. This
equation is given in terms of the standard intertwining operator between π1,−λ and
π1,−sλ (see also [35]).

The generalization to G/H of the description of the non-K -finite Paley–Wiener
image

{ f̃ | f ∈ C∞
c (X)}

is an open problem. See [17] and [1] for special cases.

13. The Schwartz space isomorphism theorem has a generalization for the τ -
spherical Fourier transform f 
→ F f by the method of Anker, but the method seems
to fail for the transform f 
→ f̃ of not necessarily K -finite functions. A Schwartz
space isomorphism theorem for f 
→ f̃ is stated in [22].

4 Eisenstein Integrals for Reductive Symmetric Spaces

The notation and theory described in [B] Section 3 will be used from now on. The
reader is encouraged to study that material first. The main references for the material
of this section are [4] and [5].

1. Decompositions. In order to generalize the results of the previous sections to
G/H we first need to see how the decompositions described in §2.2 generalize. The
Cartan decomposition and the polar decomposition of G/H are described in [B]
Corollary 3.3 and Lemma 3.6, respectively.

The direct generalization of the Iwasawa decomposition, which would be G =
H AN , fails to hold for all cases in which H is not compact. In fact, in general it fails
already on the infinitesimal level; if a ⊂ q is a Cartan subspace (maximal abelian
and consisting of semisimple elements), then in general g does not split over R for
a, so there is no “n”⊂ g. In order to obtain an analog we choose a smaller subspace,
namely aq which is maximal abelian in p ∩ q (see [B] Lemma 3.5). Then g splits as

g = n̄ ⊕ m1 ⊕ n = n̄ ⊕ mσ ⊕ aq ⊕ n

where m1 = g0, n = ∑α∈�+ gα and n̄ = ∑α∈�+ g−α for a choice �+ of positive
roots for the root system � = �(g, aq). Moreover, mσ = m1 ∩ a⊥q . The correspond-
ing generalized Iwasawa decomposition of g follows easily:

g = h ⊕ (mσ ∩ q)⊕ aq ⊕ n (4-1)

(see [28], p. 118). In order to describe the associated decomposition for G, we will
first discuss the parabolic subgroup P whose Lie algebra is m1 ⊕ n.
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2. The minimal σθ -stable parabolic subgroup. Let Aq = exp aq , N = exp n and
M1 = Gaq . Then P = M1 N is a parabolic subgroup of G (see [33] for the notion
of parabolic subgroups). We write P = M AN for its Langlands decomposition (see
[33], p. 418); then M1 = M A. It follows from the construction of P that σθ P = P ,
and in fact it is minimal (w.r.t. inclusion) among all parabolic subgroups with this
property. For the Plancherel decomposition it is important to consider general σθ -
stable parabolic subgroups (see [B], Sect. 6), but in order to describe the Paley–
Wiener theorem we need only the minimal ones (there are several, but they are all
conjugate). Notice that m1 = m⊕a and a = ah ⊕aq where aq = a∩q, the maximal
abelian subspace of p ∩ q, and ah = a ∩ h. Moreover, mσ = m ⊕ ah .

Since P is uniquely associated to the choice of positive roots, and vice-versa, we
will denote the set �+ of those roots by �(P) from now on.

Examples. For a Riemannian symmetric space G/K we have σ = θ , so the require-
ment that P be σθ -stable is empty. Thus P is just the minimal parabolic subgroup
P0 = M0 A0 N0 of §2.

In the group case (§1, 4.2), a σθ -stable parabolic subgroup is a parabolic sub-
group of �G × �G of the form �P × � P̄ , where �P is a parabolic subgroup of �G. It
is minimal if and only if �P is minimal in �G.

3. The Iwasawa decomposition for X = G/H (due to Rossmann and Matsuki)
can now be stated. We prefer to state it as a decomposition theorem for X rather than
for G, but it amounts to the same thing. For more details, see [28], Thm. 3.3.

The union
∪w∈W PwH

is disjoint, open and dense in X (for the definition of W , see [B] eq. (3.9)). Moreover,
each of the subsets PwH is open in X , and

(m, a, n) 
→ manwH

gives a diffeomeorphism of M/(M ∩ wHw−1)× Aq × N onto it.
The complement of ∪w∈W PwH in X is a finite union of P-orbits.

3.1 Assumption. From now on we will make the assumption that W has only one
element, or equivalently, that there is only one open P-orbit on G/H . This is not so
in general, but it makes the exposition considerably simpler. The assumption holds
in both cases G/H = G/K and G/H = �G.

Examples. In the Riemannian case G/K the decomposition of G/K , defined above,
reduces to the ordinary Iwasawa decomposition, written as G = P0 K = N0 A0 K .

In the group case, G/H = �G, the Bruhat decomposition of �G (See [33], Thm.
7.40) describes the double cosets of �P0 in �G, or equivalently, the �P0 × � P̄0
cosets (multiply on the right by the long element w0 of the Weyl group). Ex-
actly one of these cosets is open; this is �P0w0

�P0 = �P0
� P̄0. The generalized

Iwasawa decomposition for G/H = �G is the decomposition of this open set as
�P0

� P̄0 = �M0
� A0

�N0
�N̄0.
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4. The space ◦C. Let (τ, Vτ ) be a finite-dimensional unitary representation of K .
We need the analog of V M0

τ (cf. §3.1). It is the space V M∩K∩H
τ , but it will be more

convenient to work with the following model for this space:

◦C = C(M/M ∩ H : τ) := {ψ : M/M ∩ H → Vτ | ψ(kx) = τ(k)ψ(x)}

where k ∈ M ∩ K , x ∈ M/M ∩ H .
It can be shown (see [28], Lemma 3.2) that

M = (M ∩ K )(M ∩ H) (4-2)

so that a function ψ ∈ ◦C is uniquely determined by its value at the origin. In fact,
we see that the evaluation ψ 
→ ψ(e) is a linear isomorphism ◦C → V M∩K∩H

τ .
The identity (4-2) shows that M/M ∩ H is a compact symmetric space. In this

sense the minimal σθ -stable parabolic subgroup resembles the minimal parabolic
subgroup P0 in the group, for which the M-part M0 is compact.

5. Eisenstein integrals. We can now generalize definitions (2-1) and (3-1). Let
(τ, Vτ ) be as in the previous paragraph. The Eisenstein integral will depend linearly
on an element ψ ∈ ◦C and meromorphically on a parameter λ ∈ a∗qC. Given ψ and

λ we define the following Vτ -valued function ψ̃λ on X . Set

ψ̃λ(x) = aλ+ρP τ(m)ψ

if x = manH belongs to the open dense set M AN H , and

ψ̃λ(x) = 0

otherwise. Here ρP ∈ a∗q is as usual half the sum of the roots of �+, counted with

multiplicities. Obviously ψ̃λ is analogous to the function 1λ defined in §2. It can be
shown that ψ̃λ is continuous G/H → Vτ if λ belongs to

{λ ∈ a∗qC | Re〈λ+ ρP , α〉 < 0 for all α ∈ �+}. (4-3)

We define the Eisenstein integral

E(ψ : λ : x) =
∫

K
τ(k)ψ̃λ(k

−1x) dk ∈ Vτ (4-4)

for x ∈ X . Then E(ψ : λ) is a τ -spherical function on G/H .
In fact, the integral in (4-4) only converges for λ in the region (4-3) of a∗qC, and

to give a proper definition one must allow analytic continuation to the rest of a∗qC.
The existence of the analytic continuation is a nontrivial theorem, for which we refer
to the fundamental papers [4]-[5] (especially [5], §3. See also [10], Remark 5.1).

Outside the region (4-3) the Eisenstein integral is a meromorphic function of λ,
but with a very special structure of the singular set. It can be shown (see [12], Prop.
3.1) that the singular locus is a locally finite union of affine hyperplanes of the form
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{λ | 〈λ, α〉 = c} with α ∈ � and c ∈ R. The set of hyperplanes is independent of x ,
and when λ is outside these hyperplanes we have

E(ψ : λ) ∈ C∞(X : τ)

for all ψ ∈ ◦C. The function ψ̃λ is not smooth on G/H (except in the Riemannian
case), but the integration over K causes E(ψ : λ) to become smooth.

These Eisenstein integrals are matrix coefficients of principal series represen-
tations, induced from finite-dimensional representations of the minimal σθ -stable
parabolic subgroup P . More general Eisenstein integrals are defined for the non-
minimal σθ -stable parabolic subgroups as well, where the principal series is induced
from infinite-dimensional representations. In [B], Defn. 11.2, such a general defi-
nition is given, which at the same time exhibits the Eisenstein integral as a matrix
coefficient. For our purposes the definition given above suffices.

For a Riemannian symmetric space, definition (4-4) agrees with that of §3, and
the analytic continuation is not necessary. In the group case, definition (4-4) does
not agree with that of Harish-Chandra, which does not involve analytic continua-
tion. However, in that case the Eisenstein integrals defined here are multiples of
Harish-Chandra’s Eisenstein integrals, with factors that depend meromorphically on
λ. However, these factors are not so interesting, because, as will be explained below,
in any case we are going to normalize the Eisenstein integrals E(ψ : λ) by some
factors that also depend meromorphically on λ.

6. The c-functions. The Eisenstein integrals allow asymptotic expansions that are
entirely analogous to those of §2.7. This is due to the fact that they are (generalized)
eigenfunctions for the invariant differential operators on G/H . More precisely, for
each D ∈ D(G/H) there exists an Hom(◦C, ◦C)-valued polynomial µ(D) in λ such
that

DE(ψ : λ) = E(µ(D, λ)ψ : λ) (4-5)

(compare (2-5)). The map D 
→ µ(D) is a homomorphism, that is,

µ(D1 D2, λ) = µ(D1, λ) ◦ µ(D2, λ)

for all λ. As a result of the asymptotic expansions we can define c-functions as fol-
lows (compare §2.7-8).

There exist unique meromorphic functions

a∗qC % λ 
→ C(s : λ) ∈ Hom(◦C, ◦C)

for s ∈ W such that for λ ∈ ia∗q , ψ ∈ ◦C and m ∈ M :

E(ψ : λ : ma) �
∑
s∈W

asλ−ρP [C(s : λ)ψ](m), (4-6)

asymptotically as a → ∞ in A+
q (recall that C(s : λ)ψ is an element of ◦C which

consists of τ -spherical functions on M). The proof is given in [5], §14. The endo-
morphisms C(s : λ) ∈ Hom(◦C, ◦C) are invertible for generic λ.
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7. Normalized Eisenstein integrals. There is a serious problem associated with
the application of the Eisenstein integrals to the harmonic analysis. The problem
does not exist in any of the cases G/K and G. The Eisenstein integrals are con-
structed as meromorphic functions in λ ∈ a∗qC, but they will be used eventually for
λ ∈ ia∗q . These are the values of λ for which the associated principal series repre-
sentations πξ,λ are unitary, and it is only these representations that contribute in the
Plancherel decomposition. However, the meromorphic function λ 
→ E(λ : x) may
have (and in general, has) singularities on ia∗q . This problem is handled in [9] where
the normalized Eisenstein integrals

E◦(λ : x) := E(λ : x) ◦ C(1 : λ)−1

are introduced; here we view the Eisenstein integrals as functions having their val-
ues in Hom(◦C, Vτ ). In this fashion the Eisenstein integrals are normalized by their
behaviour at infinity, in contrast to the spherical functions on G/K which carry the
normalization φλ(e) = 1.

The main result of [9] (Thm. 2) is then that the normalized Eisenstein integrals
are regular on ia∗q . The result is generalized in [7] to Eisenstein integrals associated
with non-minimal σθ -stable parabolic subgroups.

For the case of a Riemannian symmetric space, the normalizing factor is exactly
the reciprocal of the c-function (since C(1 : λ) = c(λ), see §2.8). Notice that from
the point of view of harmonic analysis it is natural to normalize in this fashion, since
the Plancherel measure has c(λ) in its denominator. In fact, if we normalize both the
φ−λ that occurs in the definition of the spherical transform, and the φλ that occurs in
the wave packets, then the measure dλ/|c(λ)|2 in the inversion formula is replaced
by ordinary Lebesgue measure dλ, since |c(λ)|2 = c(λ)c(−λ) for λ imaginary.

The general case of a reductive symmetric space behaves similarly: When the
Fourier transform and wave packets are defined by means of normalized Eisenstein
integrals, there will be no c-functions in the Plancherel formula.

8. The functional equation. There is a functional equation for the Eisenstein in-
tegrals, generalizing that of §3.8. It reads as follows for the normalized Eisenstein
integrals:

E◦(sλ : x) ◦ C◦(s : λ) = E◦(λ : x), (4-7)

where C◦(s : λ) is the normalized c-function defined through

C◦(s : λ) = C(s : λ) ◦ C(1 : λ)−1.

See [5], Prop. 16.4. Note that by definition C◦(1 : λ) = I .

9. The Maass–Selberg relations. Finally we cite the Maass–Selberg relations,
which play a remarkable role in the theory (as in Harish-Chandra’s treatment of
the group case). For the normalized c-functions they simply assert that C◦(s : λ) is
a unitary operator on ◦C for λ ∈ ia∗q , s ∈ W . This is equivalent to the following
assertion for λ ∈ a∗qC:
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C◦(s : λ)C◦(s : −λ̄)∗ = I.

The proof of the regularity of the normalized Eisenstein integral for imaginary
λ is based on this result, which shows that at least there are no singularities in the
leading term of the asymptotic expansion of E◦(λ : x) (if there were, C◦(s : λ)

would be singular and not unitary).
The Maass–Selberg relations are established in [5], Thm. 16.3, for the Eisenstein

integrals related to the minimal σθ -stable parabolic subgroups (see also the rectifica-
tion in [6]). The proof proceeds by reduction to split rank one (i.e., dim aq = 1), by
means of the standard intertwining operators. They were generalized by Delorme to
arbitrary σθ -stable parabolic subgroups (see [19]). In [15] a different proof (found
later) is given for the general case, by reduction to the above case of minimal σθ -
stable parabolic subgroups (see [B] Theorems 11.22 and 14.2).

5 The τ -Spherical Fourier Transform and Its Inversion

The Eisenstein integrals are used to define a Fourier transform for τ -spherical func-
tions on G/H , as in §3.1. The main goal in this section is to establish the injectivity
of this transform on C∞

c (X : τ), and to write down an inversion formula for func-
tions in this space. The inversion formula will be given by means of pseudo-wave
packets. The main references are the joint papers with Erik van den Ban [9], [10] and
[12].

1. Definition. The τ -spherical Fourier transform F f of f ∈ C∞
c (X : τ) is the

meromorphic function a∗qC → ◦C defined by

F f (λ) =
∫

X
E∗(λ : x) f (x) dx ∈ ◦C (5-1)

for λ ∈ a∗qC. Here, by definition

E∗(λ : x) = E◦(−λ̄ : x)∗ ∈ Hom(Vτ ,
◦C)

where the asterisk on the right indicates the adjoint operator with respect to the
Hilbert space structures of Vτ and ◦C. When H = K definition (5-1) is identical

to (3-2), except that we have normalized E◦(λ : x) by dividing with c(λ̄) = c(λ), so
that F f (λ) becomes divided with c(−λ).

The functional equation (4-7) together with the Maass–Selberg relations 3.9 im-
ply that

F f (sλ) = C◦(s : λ)F f (λ)

for s ∈ W .

2. Wave packets are constructed as before through the adjoint of the operator F .
Let ϕ : ia∗q → ◦C be a function of suitable decay (for example ϕ ∈ S(ia∗q) ⊗ ◦C,
where S(ia∗q) is the ordinary, Euclidean Schwartz space). We define the following
τ -spherical function of x ∈ X :
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J ϕ(x) =
∫

ia∗q
E◦(λ : x)ϕ(λ) dλ. (5-2)

The fact that this integral converges and produces a smooth function of x is non-
trivial; estimates that are locally uniform in x are required for all the functions

λ 
→ Lu E◦(λ : x), u ∈ U(g).

These estimates are given in [5], Thm. 19.2 (see also [10], Lemma 9.1). With these
estimates at hand, it is easy to check by Fubini that∫

X
〈 f (x),J ϕ(x)〉 dx =

∫
ia∗q

〈F f (x), ϕ(x)〉 dλ

so that again, J is adjoint to F .
Notice the importance of the regularity theorem explained in §4.7. Without that

J ϕ could not have been defined.

3. The Schwartz space C(G/H : τ) plays no direct role in the Paley–Wiener the-
orem, which is only concerned with C∞

c . But behind the scene it is an indispensable
tool, and it is also of crucial importance in the closely connected Plancherel theory.
Its definition is similar to that for G/K in §2.13:

For x ∈ G/H let x = kaH be its polar decomposition (see [B] Lemma 3.6) and
put |x | = | log a|. Then C(X) is the space of smooth functions on X that satisfy

|Lu f (x)| ≤ C(1 + |x |)−kϕ0(xσ(x)
−1)1/2

for all u ∈ U(g) and all k ∈ N, or equivalently (see [5], §17)

(1 + | · |)k Lu f ∈ L2(X)

for all u ∈ U(g), k ∈ N. Here ϕ0 is the spherical function on G/K , as defined in §2.
The space C(X : τ) is then defined as the space of τ -spherical functions in

C(X) ⊗ Vτ . The mentioned estimates of [5] §19, together with the regularity the-
orem, show that

F : C(X : τ) → S(ia∗q)⊗ ◦C

and that this map is continuous in the natural topologies. On the other hand, in [7],
Thm. 1, further estimates are given which show that

J : S(ia∗q)⊗ ◦C → C(X : τ)

is continuous.

4. The most continuous part, L2
mc(X : τ), of L2(X : τ) is by definition the closed

span of all wave packets J ϕ, ϕ ∈ S(ia∗q) ⊗ ◦C. It is so called because the spectral
parameter λ ∈ ia∗q enters in a continuous way through the integral (in contrast to
a discrete decomposition given by a sum), and because the other components of
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L2(X : τ), which correspond to principal series representations coming from non-
minimal σθ -stable parabolic subgroups, have a continuous parameter in a space of
smaller dimension.

In particular, it follows from §3.6 that L2
mc(G/K : τ) = L2(G/K : τ).

The Plancherel theorem for L2
mc(X : τ) is the main result of [10]. It asserts the

following. The proof will be discussed below, in subsections 6-7.

Theorem The Fourier transform F extends to a continuous linear map

L2(X : τ) → L2(ia∗q)⊗ ◦C,

whose kernel is L2
mc(X : τ)⊥ and whose restriction to L2

mc(X : τ) is an isometry.
The image is the space (L2(ia∗q) ⊗ ◦C)W of all functions ϕ ∈ L2(ia∗q) ⊗ ◦C which
satisfy

ϕ(sλ) = C◦(s : λ)ϕ(λ) (5-3)

for all s ∈ W .
Moreover, the transform J extends to a continuous linear map

L2(ia∗q)⊗ ◦C → L2
mc(X : τ)

whose kernel is (L2(ia∗q)⊗ ◦C)W⊥ and whose restriction to (L2(ia∗q)⊗ ◦C)W is an
onto isometry.

Finally, the inversion formulas

f = JF f, ϕ = FJ ϕ (5-4)

hold for all f ∈ L2
mc(X : τ) and all ϕ ∈ (L2(ia∗q) ⊗ ◦C)W . In other words, JF is

the orthogonal projection onto L2
mc(X : τ) and FJ is the orthogonal projection onto

(L2(ia∗q)⊗ ◦C)W .

5. The singular set for the normalized Eisenstein integral as a function of λ can be
shown to have the following property (cf. [12], Prop. 3.1). Fix R ∈ R and put

a∗q(R) = {λ ∈ a∗qC | Re〈λ, α〉 < R,∀α ∈ �(P)}. (5-5)

Then there exist finitely many roots α1, . . . , αn and constants c1, . . . , cn ∈ R such
that for all ψ ∈ ◦C the singular set for λ 
→ E◦(ψ : −λ) in a∗q(R) is contained in

∪n
i=1{λ | 〈λ, αi 〉 = ci }.

Hence there exists a polynomial of the form p(λ) = �n
i=1(〈λ, αi 〉 − ci ) such that

λ 
→ p(λ)E◦(ψ : −λ)

is regular on a∗q(R) (the polynomial depends on R). The αi and the ci need not be
distinct. In particular, we see that if we take R sufficiently negative, then E◦(ψ : −λ)

is regular on a∗q(R).
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We also conclude the following. There exists a polynomial π of the form above,
for which λ 
→ π(λ)F f (λ) is regular on a∗q(ε) for some ε > 0 for all f ∈ C∞

c (X :
τ), and which is minimal (fewest factors) with this property. This polynomial is
unique, up to a constant factor.

6. A central step in the proof of Theorem 4 consists of showing the following. There
exists an element D0 ∈ D(X) (in general depending on τ ), such that

D0 f = JFD0 f = D0JF f (5-6)

for all f ∈ C∞
c (X : τ), such that D0 : C∞

c (X : τ) → C∞
c (X : τ) is injective, and

such that detµ(D0, λ) is not the zero polynomial in λ. The second identity in (5-6)
holds for all elements D0 ∈ D(X) because of the identities

FD f = µ(D)F f, DJ ϕ = J (µ(D)ϕ).

The difficult identity in (5-6) is the first one, which may be seen as a Fourier
inversion formula for functions in the image of D0. The proof is quite long, but the
main idea is the following. As in Helgason’s argument for the support theorem for
G/K , we want to imitate the shift of the wave packet integral described in §1.9.
There are, however, some serious difficulties associated with this, and they will be
described now.

The analysis leading to (2-12) can be carried out here too. The asymptotic expan-
sion formula (2-7) for the spherical functions can be generalized to G/H ; it looks as
follows (see [10], Thm. 7.5, compare also (4-6)):

E◦(ψ : λ : ma) =
∑
s∈W

[�sλ(a)C
◦(s : λ)ψ](m) (5-7)

where �λ(a) ∈ Hom(◦C, ◦C) is defined by a series expansion similar to that in the
Riemannian case.

The direct analog of (2-12), obtained in the similar fashion by insertion of (5-7)
in the definition (5-2) of J ϕ, and making use of the Weyl invariance of dλ to get rid
of the sum, would be

J ϕ(ma) = |W |
∫

ia∗q
[�λ(a)ϕ(λ)](m) dλ (5-8)

for ϕ : a∗qC → ◦C of suitable decay in the imaginary directions, and satisfying (5-3).
Unfortunately the right-hand side of this equation does not make sense, in general,
since the meromorphic function λ 
→ �λ(a) may have singularities on ia∗q which
need not be cancelled by zeroes of ϕ (an example of this phenomenon can be found
in [18]). However, for the sake of simplicity of exposition, let us assume that �λ is
regular on ia∗q , so that (5-8) holds as stated.

Consider the expression

|W |
∫
η+ia∗q

[�λ(a)ϕ(λ)](m) dλ (5-9)
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where η is in the negative chamber of a∗q . It can be shown that the singularities of
λ 
→ �λ(a) are of a similar nature as those of λ 
→ F f , that is, it has a finite
number of singular hyperplanes on a∗q(R) for each R ∈ R. In particular it is regular
for λ sufficiently antidomiant.

The point is to choose D0 such that the polynomial λ 
→ µ(D0, λ) vanishes to
a sufficiently high order on all the singular hyperplanes on the antidominant side of
ia∗q , for F f (λ) as well as for �λ(a). This can be done, with the mentioned injectivity
properties of D0. The shift of the integral (5-8) can then be carried through so that the
wave packet J ϕ for ϕ = FD0 f = µ(D0)F f agrees with (5-9) for all antidominant
η. By following Helgason’s argument it is then shown that JFD0 f has compact
support. The proof of (5-6) then continues by exploitation of the fact that the operator
C∞

c (X : τ) % f 
→ JFD0 f ∈ C∞
c (X : τ) is in the commutant of D(X), and finally

it is shown that this operator equals D0.

7. The proof of the second identity in (5-4) follows Harish-Chandra’s original
argument in [25], by which it is shown that there exists a function β : ia∗q →
Hom(◦C, ◦C) such that FJ is multiplication by β. The identity β = 1, through
which the Plancherel measure is essentially determined, then follows from (5-6), by
application of F on both sides of this identity. This concludes the sketch of the proof
of Theorem 4.

8. Injectivity. The following important corollary is immediately obtained from (5-
6) and the injectivity of D0:

Let f ∈ C∞
c (X : τ). If F f = 0, then f = 0.

9. Pseudo-wave packets. We return to the analysis in Subsection 6. Let us assume
that λ 
→ ϕ(λ), which is supposed to model a function of the form λ 
→ F f ,
has the singularity structure as such a function (with the proof of the Paley–Wiener
theorem in mind, we avoid the direct assumption that ϕ = F f ). It follows that (5-9)
is undefined only when η belongs to a finite number of hyperplanes in the negative
chamber, and that outside of these it is locally independent of η (use the Cauchy
theorem). In particular, it is defined and independent of η provided this element is
sufficiently antidominant.

Definition. Assume that the meromorphic function ϕ : a∗qC → ◦C has singularities
as described above, and assume that it decays rapidly (faster than any polynomial)
along each set η+ia∗q where it is defined. Then the expression (5-9), for η sufficiently
antidominant as described above, is called the pseudo-wave packet formed by ϕ. It
is denoted by

T ϕ(ma) = |W |
∫
η+ia∗q

[�λ(a)ϕ(λ)](m) dλ. (5-10)

The pseudo-wave packet T ϕ is extended to a τ -spherical function on X+ =
K A+

q H by posing
T ϕ(kaH) = τ(k)T ϕ(a).

Notice that in the Riemannian case, both �λ and ϕ(λ) will be holomorphic for
Reλ antidominant (see §2.9 and (2-11), and recall that ϕ is supposed to have the
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same singularity structure as a holomorphic function divided by c(−λ)). Hence we
can take η = 0 in the definition of the pseudo-wave packet (cf. §2.17).

In general, however, the expression (5-8) for the wave packet J ϕ differs from the
pseudo-wave packet T ϕ given by (5-10). If the dimension of aq is one, the residue
theorem tells us that the difference is a sum of residues. In higher rank, the difference
is a more complicated object.

Notice that from the way the operator D0 was chosen it follows that

D0J ϕ(x) = D0T ϕ(x) (5-11)

for x ∈ X+.

10. Definition. The pre-Paley–Wiener space. Here is a formal definition of a space
of functions ϕ for which the analysis of the preceding subsections can be done.

Let M > 0. The space MM (X : τ) is defined as the space of meromorphic
functions ϕ : a∗qC → ◦C having the following properties, where π is the polynomial
defined in 5:

(a) ϕ(sλ) = C◦(s : λ)ϕ(λ) for s ∈ W , λ ∈ a∗qC,

(b) πϕ is holomorphic on a neighborhood of the closure a∗q(0) of a∗q(0),
(c) For each k ∈ N,

sup
λ∈a∗q (0)

(1 + |λ|)ke−M |Reλ|‖π(λ)ϕ(λ)‖ < ∞.

It is a theorem that MM (X : τ) contains F f for all f ∈ C∞
c (X : τ) supported

in BM = {x ∈ X | |x | ≤ M}. We have already discussed the functional equation in
(a), and (b) holds for ϕ = F f by definition of π . The estimate in (c) is somewhat
more difficult, see [10], Thm. 8.11.

We call M(X : τ) = MM (X : τ) the pre-Paley–Wiener space, because
F(C∞

c (X : τ)) in general is a proper subspace. Some extra conditions, which will be
described in the next section, are needed in order to characterize the Paley–Wiener
space.

Example. The Riemannian case H = K and τ = 1. Since in this case C◦(s : λ) =
c(sλ)/c(λ) condition (a) is equivalent to the Weyl invariance of λ 
→ ϕ(λ)/c(λ),
which by multiplication with the W -invariant function c(λ)c(−λ) is equivalent to
the Weyl invariance of λ 
→ c(−λ)ϕ(λ). In this case π = 1, and it is then easily
seen from (2-11) that ϕ belongs to MM (X : τ) if and only if c(−λ)ϕ(λ) belongs to
PWM (G/K : 1) as it was defined in §2.12. Thus for this case no extra conditions are
needed to characterize the Paley–Wiener image. The same statement holds for the
τ -spherical case of §3.11.

11. Lemma (support theorem) If ϕ ∈ MM (X : τ), then

T ϕ(x) = 0

for all x ∈ X+ with |x | > M .
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The proof is similar to what was discussed in Subsection 6 for ϕ = µ(D0)F f .

12. Inversion formula. It was observed above that F is an injective operator on
C∞

c (X : τ). Hence it is reasonable to try to retrieve f from F f . The following is the
main result of [12]:

Let f ∈ C∞
c (X : τ). Then

f (x) = T F f (x) (5-12)

for all x ∈ X+.
Since X+ is dense in X this is the desired inversion formula.

13. The proof of (5-12) is by induction on dim aq . Here is the argument for
dim aq = 1.

Let ϕ ∈ M(X : τ). It was noted in 9 that T ϕ and J ϕ differ from each other by
a finite sum of residues:

T ϕ(ma) = J ϕ(ma)+
n∑

i=1

2π iResλ=λi [�λ(a)ϕ(λ)](m) (5-13)

where λ1, . . . , λn ∈ a∗q with 〈λi , α〉 < 0 (as in 6 we disregard λ = 0 as a possible
singularity).

Let
I = {D ∈ D(X) | D(T ϕ − J ϕ) = 0, ϕ ∈ M(X : τ)},

that is, I is the annihilator of the sum of residues in (5-13). In particular, if µ(D)

vanishes at λi to sufficiently high order for each i , then D ∈ I . This implies that I
has finite codimension in D(X).

Let f ∈ C∞
c (X : τ) and assume supp f ⊂ BM . Then F f ∈ MM (X : τ).

We want to establish the identity (5-12), i.e., that the τ -spherical function g on X+
defined by

g = f − T F f

vanishes identically. It follows from the support theorem that g(x) = 0 for |x | > M ,
and it follows from (5-6) together with (5-10) that D0g = 0 on X+.

Let D ∈ I . Then

Dg = D( f − T F f ) = D( f − JF f ) (5-14)

on X+, and since both f and JF f belong to C∞(X : τ) we conclude that Dg
has a smooth extension in this space, hence belongs to C∞

c (X : τ). Now D0 Dg =
DD0g = 0, so by the injectivity of D0 on C∞

c (X : τ) it follows that Dg = 0. Thus
g is annihilated by the cofinite ideal I . It is a theorem that a K -finite, D(X)-finite
function on X+ is analytic, so g is analytic. Because g = 0 for |x | > M it follows
that g = 0 everywhere.

14. When dim aq > 1, the expression (5-13) is replaced by an expression of the
form
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T ϕ =
∑
F⊂�

TFϕ, (5-15)

where � is the set of simple roots for �(P), and TFϕ ∈ C∞(X+ : τ) is a sum of gen-
eralized residues on a⊥Fq , where aFq is the split part of a standard σθ -stable parabolic
subgroup PF associated with F (see [B], Section 6). The generalized residues in TFϕ

involve |F | many consecutive 1-variable residues and an integral over ia∗Fq . All this
is controlled by means of theory developed in [11]. In particular, T∅ϕ = J ϕ, which
involves only integration.

The rank one proof is generalized by replacing the condition in the definition of
the ideal I by

DT�ϕ = 0,

so that (5-14) becomes replaced by

Dg = D( f − T F f ) = D( f −
∑
F��

TFF f ).

The key to the proof consists of showing that the terms TFF f for F � � all have
a smooth extension to X . This is done by an asymptotic analysis (based on [14]) by
means of which the integral kernel of TFF : f 
→ TFF f is related to the kernel on
MF/MF ∩ H corresponding to T�F for that space. The induction hypothesis is then
applied.

15. Corollary. Let f ∈ C∞
c (X : τ). Then

f =
∑
F⊂�

TFF f (5-16)

where each term TFF f belongs to C∞(X : τ).

16. This corollary is the starting point for the derivation of the Plancherel formula
in [15]. By means of the Maass–Selberg relations it is shown that for each class of as-
sociated parabolic subgroups, the map f 
→∑ TFF f , where the sum is over those
F for which PF belongs to the class, extends to a projection operator on L2(X : τ).
Moreover, the function TFF f is identified as a wave packet of Eisenstein integrals
related to PF . In particular, T�F f is the projection of f on the discrete series. Fi-
nally, the Plancherel formula for X (see [B] Section 10) is obtained by summation
over all K -types.

6 The τττ -Spherical Paley–Wiener Theorem

As mentioned in §5.11, the pre-Paley–Wiener space M(X : τ) is in general bigger
than F(C∞

c (X : τ)). The extra conditions needed are described by means of so-
called Arthur–Campoli relations. The idea is that certain relations among the Eisen-
stein integrals for different λ’s should be reflected in similar relations for F f (λ).
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For example, we have seen that the functional equation φsλ = φλ forces the rela-
tion F f (sλ) = F f (λ) for Fourier transforms. For G/K these functional equations
are the only relations of the relevant nature, that exist between the spherical func-
tions. In the general case of τ -spherical functions on G/H this is not the case. For
example, in the group case ‘G = SL(2,C), there exist nontrivial intertwining op-
erators between the principal series πn,ν and πm,µ if m = ν and n = µ, and this
gives rise to a relation between matrix coefficients of the two representations and to
a relation between the Eisenstein integrals. As long as λ is purely imaginary there
are no such relations, except those given by the action of the Weyl group; hence for
Schwartz functions we do not see any other relations among the Fourier transforms.
But for the Paley–Wiener theorem for C∞

c (X : τ) we want to extend λ in a∗qC, and
then these relations appear in the description of the image.

There is no general explicit description of all existing relations (of the relevant
nature) among the Eisenstein integrals, hence the Paley–Wiener theorem will not be
very explicit. In special cases the explicit relations are known, hence better theorems
exist. See for example [20] and [1].

1. Laurent functionals. We will first describe the kind of relations that is relevant.
This can be conveniently done by means of the notion of Laurent functionals, which
will be introduced now.

By definition, a �-hyperplane in a∗qC is a set of the form {λ ∈ a∗qC | 〈λ, α〉 = c}
for some α ∈ � and c ∈ C. We know that all singularities of Eisenstein integrals
have this form.

For λ ∈ a∗qC let M(λ,�) denote the ring of germs of meromorphic functions at
λ, whose singular locus at λ is a (necessarily finite) union of �-hyperplanes through
λ. This space can be characterized as follows. For each map d : � → N let

πλ,d(ν) = �α∈�〈ν − λ, α〉d(α).
Then

M(λ,�) = ∪d:�→N
1

πλ,d
Oλ

where Oλ denotes the ring of germs of holomorphic functions at λ. A Laurent func-
tional at λ is a linear form

L : M(λ,�) → C

such that for every d : � → N there exists an element ud ∈ S(aq) such that

Lϕ = ud(πλ,dϕ)(λ)

for all ϕ ∈ (1/πλ,d)Oλ. Here ud acts as a constant coefficient differential operator
on functions on a∗qC in the usual fashion.

Example. Assume dim aq = 1, and identify a∗qC with C. Then M(λ,�) is the ring
of germs at λ of all meromorphic functions, and a Laurent functional at λ maps ϕ to a
linear combination of coefficients from its Laurent expansion ϕ(z) =∑∞

k=−n ck(z −
λ)k . For example, ϕ 
→ c−1 is given by
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1

(n − 1)!
(∂z)

n−1[(z − λ)nϕ(z)]|z=λ.

The space of Laurent functionals at λ is denoted by M(λ,�)∗laur. The space of
all formal finite combinations

∑
Li with Li ∈ M(λi , �)∗laur for some λi ∈ a∗qC is

denoted by
M(a∗qC, �)∗laur.

Its elements can be viewed as linear forms on the space M(a∗qC, �) of all meromor-
phic functions whose germ at each λ ∈ a∗qC belongs to M(λ,�).

2. Definition, Arthur–Campoli functionals. A Laurent functional

L ∈ M(a∗qC, �)∗laur ⊗ ◦C∗

is called an Arthur–Campoli functional if

L(E∗( · : x)v) = 0 (6-1)

for all v ∈ Vτ , x ∈ X (the definition of E∗(λ : x) is given in §5.1). The space of
these functionals is denoted AC(X : τ).

3. The Paley–Wiener space for X , with respect to (τ, Vτ ) is defined as follows.
Let M > 0. Then

PWM (X : τ) := {ϕ ∈ MM (X : τ) | Lϕ = 0, ∀L ∈ AC(X : τ)},

where MM (X : τ) is the pre-Paley–Wiener space defined in §5.10. We also define

PW(X : τ) = ∪M>0PWM (X : τ).

4. The following lemma and §5.10 show that F f belongs to PWM (X : τ) for all
f ∈ C∞

c (X : τ) supported by BM . It also shows that the Arthur–Campoli relations
are the only “relations” satisfied by all Fourier transforms F f .

Lemma

AC(X : τ) = {L ∈ M(a∗qC, �)∗laur ⊗ ◦C∗ | LF f = 0, ∀ f ∈ C∞
c (X : τ)}.

The fact that LF f = 0 for L ∈ AC(X : τ) can be seen from (6-1) and the
definition (5-1). The estimates which show that λ 
→ F f (λ) is meromorphic justify
the passing of L under the integral sign. Conversely, if L ∈ M(a∗qC, �)∗laur ⊗ ◦C∗
does not satisfy (6-1) for some x ∈ X , v ∈ Vτ , then by choosing f properly (in
particular, of small support near x) it can be arranged that L(F f ) �= 0.

5. The Paley–Wiener theorem. The τ -spherical transform F is a bijection of
C∞

c (X : τ) onto PW(X : τ). If f ∈ C∞
c (X : τ), then supp f ⊂ BM if and only

if F f ∈ PWM (X : τ).



132 H. Schlichtkrull

In the group case the content of this theorem is equivalent to Arthur’s Paley–
Wiener theorem (which is stated for the normalized Eisenstein integrals), see [3].
For groups of real rank one, the result was proved earlier by Campoli, cf. [18]. In the
present generality, the result has been obtained jointly with van den Ban [16].

Only the surjectivity remains to be proved. This will be discussed below.

6. Lemma. (Campoli’s trick) Let ϕ ∈ PW(X : τ) and let V ⊂ M(a∗qC, �)∗laur⊗◦C∗
be a finite-dimensional subspace. Then there exists f ∈ C∞

c (X : τ) such that Lϕ =
LF f for all L ∈ V .

The proof is just elementary linear algebra. Define the map

� : PW(X : τ) → V ∗

by �ϕ(L) = L(ϕ). The claim of the lemma is exactly that

�(F(C∞
c (X : τ)) = �(PW(X : τ)).

If this were not the case, these spaces could be separated by an element L ∈ V , that
is, �(F f )(L) = 0 for all f ∈ C∞

c (X : τ) but �(ϕ)(L) �= 0 for some ϕ ∈ PW(X :
τ). By Lemma 4 the former means that L is Arthur–Campoli, but that contradicts
that �(ϕ)(L) = L(ϕ) �= 0.

7. Proof of the Paley–Wiener theorem, sketch. Let ϕ ∈ PW(X : τ) and consider
the pseudo-wave packet T ϕ ∈ C(X+ : τ). If it can be shown that this function has
a smooth extension f ∈ C∞(X : τ), then this extension has compact support by
§5.11, and by (5-11) the following holds:

D0 f = D0T ϕ = D0J ϕ.

Applying F on both sides and making use of (5-4) it follows that

µ(D0)F f = µ(D0)ϕ.

Since the determinant of µ(D0) does not vanish identically, we conclude that F f =
ϕ. Thus we need just prove the smooth extension of T ϕ. By (5-15) it suffices to prove
that TFϕ is smooth for each F ⊂ �. For F = ∅ this is clear, because T∅ϕ = J ϕ.

Assume dim aq = 1. Then the only other term above is T�ϕ, which is the sum
of the residues, as in (5-13). These residues can be expressed by means of Laurent
functionals (see the example above). Hence by Campoli’s trick there exists a function
f ∈ C∞

c (X : τ) such that T�ϕ = T�F f , and hence this function is smooth by
Corollary 4.15.

If dim aq > 1, the proof just described handles T�ϕ. For the remaining, inter-
mediate parts TFϕ where ∅ � F � � one can exhibit each of these expressions as
a wave packet of generalized Eisenstein integrals for PF . The asymptotic results of
[14] are used. They replace the use in [3] of Casselman’s theorem, the proof of which
has not appeared.
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Introduction

Let G be a real reductive group in the Harish-Chandra class, σ an involution of G,
θ a Cartan involution of G commuting with σ , K the subgroup of fixed points of θ ,
and H an open subgroup of the subgroup of fixed points of σ . The goal is:

(a) to decompose the left regular representation of G in L2(G/H) into an Hilbert
integral of irreducible unitary representations,

(b) to decompose the Dirac measure at eH , where e is the neutral element of G, into
an integral of H -fixed distribution vectors,

(c) to make simultaneously the spectral decomposition of the elements of the algebra
D(G/H) of left invariant differential operators under G on G/H .

In other words, one wants to write the elements of L2(G/H) with the help of joint
eigenfunctions under D(G/H).

These problems were solved for the “group case” (i.e., the group viewed as a
symmetric space : G = G1 × G1, σ(x, y) = (y, x), H is the diagonal of G1 × G1)
by Harish-Chandra in the 1970s (see [HC75], [HC76a], [HC76b], the Riemannian
case (H maximal compact) had been treated before (see [He] [GV88]). Later, there
were deep results by T. Oshima [Ōsh81]. Then, T. Oshima and T. Matsuki [ŌM84]
succeeded in describing the discrete series using the Flensted-Jensen duality [FJ80].
When G is a complex group and H is a real form, the Problems (a), (b), (c) were
solved by P. Harinck, together with an inversion formula for orbital integrals ([H98],
see also [Del97a] for the link of her work with the work of A. Bouaziz on real reduc-
tive groups).

Then, E. van den Ban and H. Schlichtkrull, on the one hand, and I on the other,
obtained simultaneous and different solutions to problems (a), (b), (c). Moreover,
van den Ban and Schlichtkrull obtained a Paley–Wiener theorem (see their chapters
in this volume and [BS01]).

I present here my point of view. It includes several joint works, mainly with J.
Carmona, and also with E. van den Ban and J. L. Brylinski.
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Severals works of T. Oshima, including the description of discrete series, linked
to the the Flensted-Jensen duality, alone and with T. Matsuki are very important in
my proof, as well as earlier results of van den Ban, van den Ban and Schlichtkrull.

Also results and ideas of N. Wallach play a very important role, especially on
asymptotic expansions (cf. [Wal83], [Wal88], Chapter 4), on the functional equation
for intertwining integrals (joint work with D. Vogan: this was the first occurrence of
a functional equation for H -fixed distribution vectors, cf. [VW90], [Wal92], Chapter
10), and on properties of Plancherel factors (cf. [Wal92], Chapter 10).

I have to acknowledge the deep influence of Harish-Chandra’s work.
The crucial role played by the work [Ber88] of J. Bernstein on the support of

the Plancherel measure, and Arthur’s article, [Art91], on the local trace formula,
especially the part dealing with truncated inner products, will be apparent in the
main body of the survey. See [Del02] for a summary.

The point of view of van den Ban and Schlichtkrull and our point of view are
spectral in nature, i.e., we try to make the spectral decomposition for elements in
D(G/H) directly by constructing eigenfunctions (see also the treatment of the Rie-
mannian case, H = K , by Harish-Chandra, cf. [GV88]).

P. Harinck’s point of view is that of invariant harmonic analysis: one tries to
disintegrate the Dirac measure at eH (or more generally orbital integrals) in terms of
left H -invariant, eigendistributions under D(G/H) on G/H .

Harish-Chandra’s point of view mixes the spectral point of view with invariant
harmonic analysis.

Apart the work of Harish-Chandra and Bouaziz for the group case and the work
of Harinck for G(C)/G(R) (see [Del97a] for a survey), the invariant harmonic anal-
ysis on reductive symmetric spaces is a widely open subject.

We would like to mention further results.
K. Ankabout [Ank01] was able to prove generalized Schur orthogonality rela-

tions for tempered eigenfunctions on G/H .
S. Souaifi [Sou] studied the K -finite and D(G/H)-finite functions on G/H . He

proved that they are linear combinations of derivatives, along the complex parameter,
of Eisenstein integrals.

Along the lines of this chapter, using results of E. Opdam, I studied the hyper-
geometric Fourier transform of a natural Schwartz space [Del99].

1 Basic Structural Results

If S is a Lie group, s will denote its Lie algebra, and ds will denote a left Haar
measure. If T is a closed subgroup of S, and S/T admits a nonzero left invariant
measure du, we will denote simply by L2(S/T ) the space L2(S/T, du). If E is a
vector space (resp. topological vector space), E∗ (resp. E ′) will denote its dual (resp.
topological dual). If A is a continuous linear operator between two topological vector
spaces, t A will denote its transpose. If π is a representation of S by continuous linear
operators in E , π ′ will denote the contragredient representation.
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Definition 1 A Lie group G is a reductive group in the Harish-Chandra’s class if:

(i) the Lie algebra g of G is reductive,
(ii) G has finitely many connected components,

(iii) the derived group [G, G] has finite center,
(iv) Ad g, for g ∈ G, is an inner automorphism of the complexified Lie algebra of

G.

In particular, a connected semisimple Lie group with finite center is in the Harish-
Chandra class. This class of reductive groups was introduced by Harish-Chandra
[HC75].

We fix a reductive group G in the Harish-Chandra class. Let σ an involutive
automorphism of G, and H an open subgroup of the fixed point set Gσ of σ . Then
G/H is a reductive symmetric space in the Harish-Chandra class.

Let θ be a Cartan involution of G commuting with σ , which always exists (cf.
[Ber57], [Ban87a]). Let K be the fixed point set of θ , which is, from the properties
of Cartan involutions, a maximal compact subgroup of G.

Let s (resp. q) be the eigenspace of the differential of θ (resp. σ ) corresponding
to the eigenvalue −1. Let a∅ be a maximal abelian subspace of s ∩ q.

We fix a bilinear form B on g such that:

B is Ad G-invariant, σ and θ-invariant,
and coincides with the Killing form on [g, g],

(1.1)

X 
→ ‖X‖2 := −B(X, θX) is a positive definite quadratic form on g. (1.2)

Let z(g) be the center of g and let AG = exp(z(g) ∩ a∅), which is a vector subgroup
of G. Let MG be the subgroup generated by K and the analytic subgroup of G
whose Lie algebra is the orthogonal of aG for B. Then MG contains H and the map
(g, a) 
→ ga from MG × AG to G is a diffeomorphism. In particular one has

G = MG AG . (1.3)

It is a basic fact that the set �(g, a∅) of nonzero weights of a∅ in g is a root system
([Ros78], see also [ŌS84]).

We fix once and for all a set of positive roots in �(g, a∅), �+(g, a∅). We will
denote by L∅ the centralizer for a∅ in G. Then L∅ is stable by σ . We set A∅ =
exp a∅. Analogously, the decomposition (1.3) for L∅ is written L∅ = M∅A∅. Then
M∅/M∅ ∩ H is compact.

Let us denote by n∅ the sum of the weight spaces of a∅ in g, relative to the
elements of �+(g, a∅), and by N∅ the corresponding analytic subgroup of G with
Lie algebra n∅. Then P∅ := M∅A∅N∅ is a σθ -stable parabolic subgroup. Moreover,
it is minimal among the σθ -stable parabolic subgroups of G. All minimal σθ -stable
parabolic subgroups are of this type, up to the choice of A∅ and �+(g, a∅).

Definition 2 Let P be a σθ -stable parabolic subgroup of G containing A∅. Let NP

be the unipotent radical of P , and L P = P ∩ θ(P).
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Then (L P , σ| L P , θ| L P ) satisfies the same hypothesis as (G, σ, θ). One sets L P =
MP AP to be the decomposition (1.3) for L P . One has AP ⊂ A∅. Then the decom-
position P = MP AP NP is called the σ -Langlands decomposition of P . One defines

ρP (X) := 1/2 tr(ad X)|nP , X ∈ aP .

Let �P be the set of roots of aP in nP and let N�P be the linear combinations of
elements of �P with coefficients in N.

We will make the following simplifying hypothesis:

H P∅ is dense in G. (1.4)

Notice that H P∅ is always open. This assumption makes the exposition simpler, but
all the ideas are essentially contained in this particular case. Notice that the “group
case” (G = G1 × G1, σ(x, y) = (y, x)) satisfies this hypothesis.

We set a+∅ = {X ∈ a∅|α(X) > 0, α ∈ �+(g, a∅)} and A+
∅ = exp a+∅ . One has

(see e.g., [Ban87a])

K A+
∅ H is open dense in G, G = K A∅H. (1.5)

We fix a nonzero left invariant measure on G/H , on M∅/M∅ ∩ H , and on A∅. Then
one has the following important integral formula for a suitable (explicit) function
DP∅ on A+

∅ (see [FJ80], or [Del98] for the statement):∫
G/H

f (x) dx =
∫

K

∫
A+
∅

f (kaH)DP∅(a) dkda. (1.6)

Definition 3 One defines sd := i(k ∩ q) ⊕ (s ∩ q) ⊂ gC, and we fix ad to be a
maximal abelian subspace of sd with a∅ ⊂ ad . Then, the nonzero roots of ad in gC

form a root system, whose Weyl group is denoted by W (ad). Then there exists a
canonical isomorphism of algebras, called the Harish-Chandra homomorphism (see
[GV88] for the Riemannian case, [Ban88] in general),

γad : D(G/H) → S(ad)W (ad ).

For λ ∈ (ad)∗C, one defines a character χλ of D(G/H) by

χλ(D) = (γad (D))(λ), D ∈ D(G/H).

A smooth function on G/H , f , such that

D f = χλ(D) f,

is called an eigenfunction for D(G/H), for the eigenvalue χλ.
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2 Schwartz Space: Definition and First Properties

Let a0 be a maximal abelian subspace in s containing a∅ and set A0 = exp a0. We
fix a subset �+(a0) of positive roots in the set of roots of a0 in g. Let n0 be the
sum of the weight spaces of a0 in g relative to weights in �+(a0) and let N0 be the
corresponding analytic subgroup of G. Then, one has the Iwasawa decomposition
G = K A0 N0. For g = k0a0n0, with k0 ∈ K , a0 ∈ A0, n0 ∈ N0, we set a0(g) := a0.
Let us define

ρ0(X) = 1/2 tr(ad X)|n0 , X ∈ a0,

and

�(g) :=
∫

K
eρ0(log(a0(gk))) dk, g ∈ G. (2.1)

This is the �-function of Harish-Chandra (cf. [GV88]).
This is a K -biinvariant function. It is also a coefficient of a spherical principal

series of G.
Then the �-function has a simple definition:

�G(gH) = (�(gσ(g−1)))1/2, g ∈ G.

The important properties of �G are

�G is left K -invariant, right H-invariant. (2.2)

There exists C > 0 and d ∈ N such that:
a−ρP∅ ≤ �G(a) ≤ Ca−ρP∅ Nd(a), a ∈ A+

∅ ,
(2.3)

where

ρP∅(X) = 1/2 tr(ad X)|n∅ , X ∈ a∅, (2.4)

Nd(gH) = (1 + ‖X‖)d if g = k(exp X)h, k ∈ K , h ∈ H, X ∈ a∅. (2.5)

In [Ban87a], van den Ban gave a definition of an L2 Schwartz space. Later in
[Ban92], he proved that his definition is equivalent to the following.

Definition 4 Let C(G/H) be the space of smooth functions f on G/H such that,
for any D in the enveloping algebra U (g) of gC and any n ∈ N, one has

pn,D( f ) := sup
x∈G/H

�G(x)−1 Nn(x)|L D f (x)| < +∞,

where L denotes the differential of the left regular representation of G on C∞(G/H).
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Then (see [Ban92], Theorem 17.1 and [Ban87a], Lemma 7.2), one has:

Theorem 1 The algebra D(G/H) of differential operators on G/H, which are left
invariant under G, acts continuously on C(G/H) when it is endowed with the topol-
ogy given by the seminorms pn,D as n and D vary.

The group G acts smoothly on C(G/H).

The proof uses radial part of elements of D(G/H) and the comparison of the two
definitions of the Schwartz space.

Definition 5 Let A(G/H) be the space of K -finite and D(G/H)-finite functions on
G/H (which are automatically smooth).

Let Atemp(G/H) be the subspace of ϕ ∈ A(G/H) for which, for all D ∈ U (g),
there exists C and m ∈ N such that

|L Dϕ(x)| ≤ C Nm(x)�G(x), x ∈ G/H.

Such a function will be called H -tempered, or, most of the time, simply tempered.

The following lemma is an easy consequence of the integral formula (1.6) and
the inequalities (2.3).

Lemma 1 There exists m ∈ N such that

N−1
m �2 ∈ L1(G/H).

If D is a differential operator on G/H , there is a differential operator, D∗, on
G/H such that∫

G/H
(D f )(x) f1(x) dx =

∫
G/H

f (x)(D∗ f1)(x) dx, f, f1 ∈ C∞
c (G/H).

D∗ is called the formal adjoint of D. If D ∈ D(G/H), then D∗ ∈ D(G/H).
For the next theorem, see [Del97b], which uses the results of [Ban87b].

Theorem 2

(i) D(G/H) acts on Atemp(G/H).
(ii) There is a natural invariant sesquilinear pairing between C(G/H) and

Atemp(G/H), given by

( f, ϕ) =
∫

G/H
f (x)ϕ(x) dx .

(iii) If D ∈ D(G/H),

(D f, ϕ) = ( f, D∗ϕ), f ∈ C(G/H), ϕ ∈ Atemp(G/H).
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Now, we will state a theorem, essentially contained in the work of J. Bernstein,
[Ber88] (see also [CD94], Appendix C).

Theorem 3 For d ∈ N large enough, the injection of L2(G/H, Nddx) in L2(G/H, dx)
is an Hilbert–Schmidt operator.

The importance of this theorem will be seen later. As a Corollary of Lemma 1,
one has:

C(G/H) is a subspace of L2(G/H, dx), the embedding,
which is continuous, factors through the embedding
of L2(G/H, Nddx) into L2(G/H, dx).

(2.6)

3 Method of Gelfand–Kostyuchenko

In this section, G will be a locally compact, separable group.
First, we discuss the notion of direct integral, or Hilbert integral of representa-

tions [Dix81].

Definition 6 A Hilbert integral of representations corresponds to the following data:

(1) A measurable set Z with a Borel measure µ,
(2) a partition of Z , in measurable subsets,

⋃
n∈N∪{∞} Zn ,

(3) for all n ∈ N ∪ {∞}, Hn is a given Hilbert space with an orthonormal basis of
cardinal n (for ∞, we take a separable Hilbert space),

(4) for all z ∈ Zn , πz is a continuous unitary representation of Zn in Hz := Hn , such
that, for all v ∈ Hn , g ∈ G, z 
→ πz(g)v is a measurable function.

Then, we define ∫ ⊕

Z
Hz dµ(z) :=

⊕
n∈N∪{∞}

L2(Zn, µ)⊗̂Hn, (3.1)

where ⊗̂ is the Hilbert tensor product. The Hilbert integral of the πz

π =
∫ ⊕

Z
πz dµ(z)

is acting on measurable L2-sections, z 
→ ηz (∈ Hz), by the formula

(π(g)η)z = πz(g)ηz . (3.2)

The L2-sections are denoted by
∫ ⊕

Z ηz dµ(z).
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From the general theory ([Dix81]), one has:

Every continuous unitary representation of G in a separable
Hilbert space admits a desintegration in an Hilbert integral
of irreducible unitary representations.

(3.3)

No, assume we have a Hilbert integral of continuous unitary representations of G,
(π, H), and also a continuous representation of G (not necessarily unitary), in a
separable Hilbert space, (λ, L), and an intertwining operator, α, between λ and π ,
from L to H .

The following is due to Gelfand–Kostyuchenko (see [Ber88]).

Theorem 4 Assume that α is a Hilbert–Schmidt operator, i.e.,
∑

i ‖α(ϕi )‖2 < +∞
for an orthonormal basis (ϕi ) of L . Then there exists for µ-almost all z ∈ Z, a
continuous intertwining operator, αz : L → Hz, between λ and πz , such that, for all
ϕ ∈ L,

α(ϕ) =
∫ ⊕

Z
αz(ϕ) dµ(z). (3.4)

Moreover, if α(L) is dense, for µ-almost all z ∈ Z, αz is nonzero.

Sketch of proof. One chooses an orthonormal basis (ϕi ) of L , and set ξi = α(ϕi ).
One chooses a desintegration of ξi ,

∫ ⊕
Z ξi z dµ(z). As α is a Hilbert–Schmidt opera-

tor, one has

M(α) :=
∑

i

‖ξi‖2 < +∞.

But, one has ∑
i

‖ξi‖2 =
∑

i

∫
Z
‖ξi z‖2 dµ(z).

From the Fubini theorem for positive measurable functions, one has

M(α) =
∫

Z
Mz dµ(z), where Mz =

∑
i

‖ξi z‖2.

The set Z ′∞ := {z ∈ Z | Mz = +∞} is of measure zero. Then, it is easy to see that,
for all z ∈ Z − Z ′∞, one can define a unique continuous linear operator αz : L → Hz

such that

αz(ϕi ) = ξi z .

Then this family of (αz) satisfies (3.4). One has to make some other operations, and
thus to reduce Z − Z ′∞, to ensure that the αz are intertwining operators (use the
separability of G). The last part of the theorem is obvious.
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Assume H is a closed subgroup of G, and that there exists a left invariant measure
under G on G/H , dx .

Actually, a very important fact for us is, in the case where π is equal to left
regular representation in L2(G/H, dx) and the πz are irreducible, that αz dualizes
and gives an intertwining operator βz between π and the adjoint representation to λ.

With the notations of the previous paragraphs 1, 2, i.e., G is reductive, . . . , and
going through C∞ vectors, one has the following Corollary of Theorems 3 and 4.

Theorem 5 For µ-almost all z ∈ Z, one has nonzero continuous intertwining oper-
ators

βz : (Hz)∞ → L2(G/H, N−ddx)∞. (3.5)

When βz is followed by the evaluation in eH, this gives a continuous linear form jz
on (Hz)∞, i.e., a distribution vector on Hz, which is H-invariant and

(βz(φ))(gH) = 〈π ′
z(g) jz, ϕ〉, ϕ ∈ (Hz)∞. (3.6)

This theorem is important because (3.5) together with (3.6) is a restrictive condi-
tion for the πz occurring (see below).

4 Asymptotic Expansions, Converging Expansions

The asymptotic expansions were developed in the group case by N. Wallach [Wal83]
(cf. also [Wal88]).

Using Wallach’s ideas, these expansions were generalized to symmetric spaces
(cf. [Ban92] and [BS87]).

Definition 7 Let us denote Mod(G/H) (Mod for moderate growth) the space of
C∞ functions f on G/H with (uniform) moderate growth, i.e., for which there exists
r , such that, for all u ∈ U (g), there exists Cu > 0 satisfying:

|(Lu f )(kaH)| ≤ Cuer‖ log a‖, k ∈ K , a ∈ A∅.

This is a G-module (see [Ban88]).
For λ ∈ (ad)∗C, one defines

L(P, λ) := {wλ|aP − ν|w ∈ W (ad), ν ∈ N�P }.
For the following theorem, see [Ban92].

Theorem 6 Let f ∈ Mod(G/H) an eigenfunction under D(G/H) for the eigen-
value χλ, λ ∈ (ad)∗C. For every ξ ∈ L(P, λ), there exists a C∞ map on G × aP ,
(g, X) 
→ pξ (P, f, g, X), which is polynomial in X, of degree bounded indepen-
dently of ξ , such that, for all g ∈ G, and X ∈ aP , strictly �P -dominant:

f (g(exp t X)H) is asymptotic to
∑

ξ∈L(P,λ)

pξ (P, f, g, t X)et (ξ(X)−ρP (X))

when t goes to +∞. The functions are uniquely characterized by this property.
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Let us explain what asymptotic means.

For every N ∈ R, the set L(P, λ)N ,X := {ξ ∈ L(P, λ)| ξ(X)−ρP (X) ≥ N }
is finite and∣∣∣∣∣∣ f (g exp t X H)−

∑
ξ∈L(P,λ)N ,X

pξ (P, f, g, t X)e(ξ−ρP )(t X)

∣∣∣∣∣∣
is bounded above by a function of the type Ce(N−ε)t for t ≥ 0.

Idea of the proof. We fix g ∈ G, X ∈ aP , strictly �P -dominant, and N ∈ R. The
idea is to build a function, t 
→ F(t), with values in some finite-dimensional space,
whose first component is just t 
→ f (g(exp t X)H), and which satisfies a differential
equation

d

dt
F(t) = BN F(t)+ RN (t), (4.1)

where BN is a matrix, and there is a certain control of the eigenvalues of BN (among
the (ξ − ρP )(X), ξ ∈ L(P, λ)N ,X ) and of the function RN . This is for the control
of RN for which we make the hypothesis “ f ∈ Mod(G/H)”. Then, one uses the
theory of first order linear differential systems.

As we said already, this theory was developed by N. Wallach [Wal83] (see also
[Wal88]) for the group case, and requires important algebraic preliminaries. For the
Riemannian case, van den Ban and Schlichtkrull developed a theory for families
of eigenfunctions depending holomorphically on a parameter ([BS87], and for the
general reductive symmetric spaces, see [Ban92] and also [Wal92], Chapter 12).

An important property of the coefficients in the asymptotic expansion:

If X ∈ aP and ξ ∈ L(P, λ) are given, the map

f 
→ pξ (P, f, ·, X)

is G-equivariant for the left regular representations on functions on G/H
and G.

Definition 8 ξ ∈ (a∗P )C is called an asymptotic exponent along P for f , if ξ ∈
L(P, λ) and pξ (P, f, ·, ·) is not identically zero. A leading asymptotic exponent is
an asymptotic exponent ξ such that there is no exponent of the form ξ + µ, µ ∈
N�P − {0}.

Theorem 7 Let f be a K -finite eigenfunction under D(G/H), on G/H for the
eigenvalue χλ. Then f ∈ Mod(G/H) and, for X ∈ a+∅

f (k exp X H) =
∑

ξ∈L(P∅,λ)
pξ (P∅, f, k, X)e(ξ−ρP∅ )(X)

. (4.2)
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The study of K -finite eigenfunctions for the group case goes back to Harish-
Chandra. The work of W. Casselman and D. Miličić [CM82] turns out to be very
enlightening (cf. [Ban87a] for the generalization to the symmetric spaces).

The theory of converging expansions provides an equivalence between the con-
trol of the ξ (called the exponents of f along P∅) which actually contributes to (4.2)
and of the growth of f . Also, L p conditions on f are equivalent to conditions on
the exponents ([CM82] and [Ban87a]). Moreover, there are links between leading
exponents and intertwining maps with principal series ([CM82], and [Del87] for the
symmetric spaces).

Definition 9 Let (π, Hπ ) be an irreducible unitary representation of G and ξ an H -
fixed distribution vector.

Let βξ be the map from H∞
π into C∞(G/H) defined by

(βξ (v))(gH) = 〈π ′(g)ξ, v〉, g ∈ G.

Then ξ is said to be H -tempered if βξ (v) is H -tempered (see Definition 5) for all
K -finite vectors v.

Theorem 8 Let
∫ ⊕

Z πz dµ(z) be a decomposition into irreducible representations of
the left regular representation of G in L2(G/H). For µ-almost z, let βz and jz as in
Theorem 5. Then, for µ-almost all z, jz is H-tempered.

Sketch of proof. By using Theorems 3 and 5, for µ-almost all z in Z , one has a
nonzero map from (Hz)∞ into L2(G/H, N−ddx). Together with the property of
converging expansions, one sees that this map defines a (g, K )-module map from
the space (Hz)(K ) of K -finite vectors in Hz into a space of tempered functions on
G/H (see [CD94], Appendix C).

Notice that they are not necessarily eigenfunctions under D(G/H), but they are
D(G/H)-finite and there is a theory of converging expansions for such functions.

The links between leading exponents and intertwining operators with principal
series (see [Del87]) allow one to prove:

Theorem 9 Let (π, Hπ ) be an irreducible unitary representation of G with a nonzero
H-tempered distribution vector. Then there exists a σθ -stable parabolic subgroup,
containing P∅, P, an irreducible subrepresentation (δ, Vδ) of the representation of
MP in L2(MP/MP ∩ H), called a discrete series for MP/MP ∩ H, ν ∈ ia∗P , and
an embedding of (πz, Hz) in the unitarily induced representation 2π P

δ,ν from the rep-
resentation of P, which is trivial on NP , equal to δ on MP and for which AP acts by
the character with differential ν. Moreover there exists a nonzero H-fixed distribu-
tion vector ξ for 2π P

δ,ν , which is H-tempered.
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5 Discrete Series

5.1 Flensted-Jensen’s Duality As we already said, a discrete series for G/H is
an irreducible subrepresentation of L2(G/H). Roughly speaking, the determination
of discrete series can be reduced to the case where G is connected, semisimple, with
finite center. So, we will assume G to be semisimple. To simplify the matter, we will
even assume that G is the analytic subgroup, with Lie algebra g, of the connected,
simply connected Lie group, GC, with Lie algebra gC.

One introduces

kd = (h ∩ k)⊕ i(h ∩ s),

sd = i(q ∩ k)⊕ (q ∩ s),

hd = (k ∩ h)⊕ i(k ∩ q),

gd = kd ⊕ sd .

Then gd (resp. hd ) is a real form of the Lie algebra gC (resp. kC).
Let Gd (resp. K d , Hd , KC) be the analytic subgroup of GC with Lie algebra gd

(resp. kd , hd , kC). The group K d is a maximal compact subgroup of Gd .
Any K -finite function on K , ϕ, admits a holomorphic extension to KC, and we

denote by ϕd its restriction to Hd , which is Hd -finite.
If f is an element of the space C∞(G/H)(K ) of smooth K -finite functions on

G/H , for a ∈ A∅, let T f (a) be the K -finite map on K defined by

(T f (a))(k) = f (kaH).

Taking into account the decomposition Gd = Hd A∅K d , for Gd/Hd , where we have
changed g in g−1, (see (1.5)), one can define a function f d on Gd/K d by

f d(haK d) = (T f (a))
d(h), h ∈ Hd , a ∈ A∅.

The preceding definition and the following theorem are due to M. Flensted-Jensen,
[FJ80].

Theorem 10 The map f 
→ f d is a bijective gC-morphism from C∞(G/H)(K ) onto
the space C∞(Gd/K d)(Hd ) of smooth functions on the Riemannian symmetric space
Gd/K d .

Idea of the proof. The proof reduces to a statement on analytic functions. For an an-
alytic function f , locally f and f d are the restriction to G and Gd of a holomorphic
function on GC. This allows one to conclude the following.

5.2 Results of T. Ōshima and T. Matsuki By an argument involving the es-
sential self-adjointness of formally self-adjoint operators in D(G/H), one proves,
[Ban87b], that the subspace of L2(G/H), generated by the discrete series, is a sum
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of irreducible subrepresentations for which the space of K -finite vectors are smooth
eigenfunctions under D(G/H).

Recall that the characters of D(G/H) are of the form χλ, λ ∈ (ad)∗C.
We fix a minimal parabolic subgroup Pd of Gd containing Ad = exp ad , with

unipotent radical N d and Langlands decomposition Pd = Md Ad N d . Let �Pd the
roots of ad in nd . As χλ = χwλ, for w ∈ W (ad), we can always assume that Re λ is
�Pd -dominant. Let ρPd (X) = 1/2 tr(ad X)|nd , X ∈ ad .

The following theorem is due to T. Ōshima and T. Matsuki, [ŌM84].

Theorem 11 Let λ ∈ (ad)∗C, and let us define:

A2(G/H, λ) := { f ∈ C∞(G/H)(K )| f is an eigenfunction under D(G/H)

for the character χλ, f ∈ L2(G/H)}.
Assume that Re λ is �Pd -dominant. If A2(G/H, λ) is not reduced to zero, then λ is
real and regular with respect to the roots of ad in gd , i.e., the stabilizer of λ in W (ad)

is trivial.

Now the theory of asymptotics applies to the Riemannian symmetric space
Gd/K d . If f ∈ Mod(Gd/K d) transforms under χλ, λ ∈ (ad)∗C with Re λ strictly
�Pd -dominant, the map

(βλ( f ))(g) := pλ(Pd , f, g, X), g ∈ Gd , X ∈ ad , (5.1)

does not depend on X and one has

(βλ( f ))(gman) = aλ−ρPd (βλ( f ))(g), g ∈ Gd , m ∈ Md , a ∈ Ad , n ∈ N d .

(5.2)

This is called the boundary value of f . The map f 
→ βλ( f ) is injective with inverse
given, up to a constant, by an integral transformation (see below), the Poisson trans-
formation (cf. [BS87] in the context of distributions, see [KKM+78] for the earlier
work involving hyperfunctions).

If f is an Hd -finite function, D(Gd/K d)-eigenfunction for χλ, f will not be, in
general, an element of Mod(Gd/K d). It is nevertheless possible to define a bound-
ary value map. The construction of this map can be done for general eigenfunctions
([KKM+78]) but the resulting object is an hyperfunction. For our particular choice
of f , it can be defined as a distribution, on Gd , using the fact that, for ϕ ∈ C∞

c (Gd),
ϕ ∗ f ∈ Mod(Gd/K d) (cf. [BS87], §14). One sets

(βλ( f ))(ϕ) = (βλ(ϕ̌ ∗ f ))(e) with ϕ̌(g) = ϕ(g−1).

The inverse map to βλ is given, up to a constant c(λ) �= 0, by the Poisson transform.
It is defined on the space D′(Gd , Pd , λ) of distributions on Gd , ψ , satisfying the
covariance condition in (5.2), by

Pλψ(gK d) =
∫

K d
ψ(gk) dk, g ∈ Gd .
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The following theorem is due to T. Ōshima and T. Matsuki (cf. [ŌM84], and also
[Mat88]). The earlier work of M. Flensted-Jensen , [FJ80], proved part of it and gave
conjectures.

Theorem 12 Let λ be real, regular and �Pd -dominant. Assume A2(G/H, λ) is
nonzero. Then:

(i) There exists a maximal abelian subspace ad
1 of iq (or sd ) contained in i(k ∩ q).

(ii) λ lies in a certain lattice in (ad)∗.
(iii) The map

A2(G/H, λ) −→ D′(Gd , K d , λ)

f 
−→ βλ( f d)

is an isomorphism onto the sum of the spaces D′
i (G

d , K d , λ)(Hd ) of Hd-finite
distributions elements in D′(Gd , Pd , λ), supported on the closed (Hd , Pd)-
double cosets, Hd xi Pd, i = 1, . . . , p.

The proof uses various boundary values, for f d , attached, by T. Oshima ([Ōsh84]),
to hyperfunction solutions of systems of partial differential equations with regular
singularities and the study of the relations of their support. The growth of f is re-
lated to the boundary values with support having a nonempty interior. The control of
this support requires geometric lemmas.

Notice that the (Hd , Pd)-double cosets where determined by T. Matsuki ([Mat79],
[Mat82]).

As a consequence of this theorem, the inverse of the Flensted-Jensen duality,
followed by the Poisson transform, applied to Hd -finite elements in D′(Gd , Pd , λ)

supported on closed orbits, produces elements of A2(G/H, λ). This fact was first, in
a particular case, observed by Flensted-Jensen ([FJ80]).

As gd
C = gC and hd

C = kC, D′
i (G

d , K d , λ)(Hd ) has a structure of (g, K )-module.
Moreover, it is either irreducible or zero as a g-module (D. Vogan [Vog88]).

6 H-Fixed Distribution Vectors for Generalized Principal Series:
Meromorphic Continuation, Temperedness

6.1 H-Fixed Distribution Vectors for Generalized Principal Series.
Preliminary Data:

Let P be a σθ -stable parabolic subgroup, containing A∅, P = M AN its σ -
Langlands decomposition, and L = M A, (δ, Vδ) an irreducible unitary representa-
tion of M .

Let V(δ) be the space of M ∩ H -fixed distribution vectors of δ (it is finite dimen-
sional, cf. [Ban87b]). We fix η ∈ V(δ). For ν ∈ a∗C, one has the generalized principal
series. Namely, one has

I P
δ,ν := {ϕ : G → V∞

δ | ϕ smooth, ϕ(gman) = a−ν−ρP δ(m−1)ϕ(g),
g ∈ G, m ∈ M, a ∈ A, n ∈ N },
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the representation of G, by left regular representation, on I P
δ,ν being denoted by π P

δ,ν .
One has the compact realization. The restriction of functions to K induces an

isomorphism between I P
δ,ν and

Iδ := { f : K → V∞
δ | f smooth, f (km) = δ(m−1) f (k), k ∈ K , m ∈ M ∩ K },

the representation of G, given by “transport de structure”, on Iδ being denoted by
π̄ P
δ,ν .

Fact:
Notice that H P is open in G, and due to our hypothesis (1.4), it is dense in G.

Theorem 13 Let ν ∈ a∗C such that Re ν − ρP is strictly �P -dominant. There exists
a unique continuous function j (P, δ, ν, η) from G to V−∞

δ := (V∞
δ )′ such that:

(i) its value in e is equal to η,
(ii) it is left H-invariant,

(iii) it is zero outside H P,
(iv) j (P, δ, ν, η)(gman) = aν−ρP δ′(m)−1 j (P, δ, ν, η)(g), g ∈ G, m ∈ M, a ∈ A,

n ∈ N .

Then, j (P, δ, ν, η) is an H-fixed distribution vector on I P
δ,ν . Moreover, it is an eigen-

vector under the algebra U (g)H of elements in the enveloping algebra of g, invariant
by H, if η is an eigenvector under U (m)M∩H .

The proof was given independently by van den Ban [Ban88] and G. Ólafsson
[Óla87], for the case P minimal; see [BD92] for the general case.

For the general case, one uses properties of finite-dimensional representations of
G with nonzero H -fixed vector (see Lemma 2 below), to understand what happens
when a sequence in H P converges towards an element of the complementary set.
Fact:

There is a natural G-invariant pairing between
I P
δ,ν and I P

δ′,−ν
given by

〈ϕ,ψ〉 = ∫K 〈ϕ(k), ψ(k)〉 dk.

More generally, (I P
δ,ν)

−∞ can be realized as a subspace
of the topological dual, D′(G, V∞

δ ), of C∞
c (G, V∞

δ ),

with some covariance properties under P.

(6.1)

6.2 Meromorphic Continuation of j(P, δδδ, ννν, ηηη). Statement and First Step

Lemma 2 There exists δ̃1, . . . , δ̃l , a basis of the orthogonal in a∗P of the central part
of aP , such that:

(i) δ̃1, . . . , δ̃l are �P -dominant.
(ii) For ni ∈ N∗, i = 1, . . . , p, µ =∑p

i=1 ni δ̃i is strictly �P -dominant.
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(iii) There exists a finite-dimensional representation (πµ, Vµ), with a nonzero vector
vµ, such that

πµ(man)vµ = aµvµ.

(iv) There exists ξµ ∈ V ∗
µ , H-invariant, with 〈ξµ, vµ〉 �= 0.

The proof rests on the following remark. If (π, F) is a finite dimensional repre-
sentation, π ⊗ π∗ has a nonzero vector fixed under G (the identity in F ⊗ F∗ ≈
End F). Similarly, π ⊗ (π∗ ◦ σ) has a nonzero vector fixed under H .

The meromorphic continuation of j (P, δ, ν, η) in ν has been proved for P min-
imal independently by van den Ban [Ban88] and G. Ólafsson [Óla87] (see also the
earlier work of T. Ōshima and J. Sekiguchi for the spaces of type G/Kε [ŌS80]).
J.-L. Brylinski and the author treated the general case by D-module arguments
([BD92]).

We describe below a proof (see [CD94]), which extends certain techniques due
to van den Ban in the case of P minimal (see [Ban88], [Ban92]), in particular, which
prove a functional equation. Note the work of D. Vogan and N. Wallach, [VW90],
for intertwining integrals (see [Wal92], Chapter 10), which proves also a functional
equation for intertwining integrals. These intertwining operators can be viewed as
distribution vectors for generalized principal series for G × G, invariant under the
diagonal (see [BD92]).

Theorem 14
(i) As a function of ν, the map

ν 
→ j (P, δ, ν, η),

for fixed η ∈ V(δ), admits a meromorphic extension to ν ∈ a∗C.
(ii) Fix µ as in the lemma. There exists a polynomial map, bµ (resp. Rµ, Dµ), on a∗C,

with values in C (resp. EndV(δ), resp. in the algebra of differential operators
on G with coefficients in End V∞

δ ), with bµ not identically zero and such that

bµ(ν) j (P, δ, ν, η) = Dµ(ν) j (P, δ, ν + µ, Rµ(ν)η) (6.2)

as an identity of meromorphic functions.
(iii) For R ∈ R, we set a∗(P, R) := {ν ∈ a∗C| (Re ν, α) > R, α ∈ �P }. Then there

exists a product pR of nonzero affine linear forms of the type α+ c, where α is a
root of aP , c ∈ C, such that pR(ν) j (P, δ, ν, η) is holomorphic on a∗(P, R).

First step. The proof reduces to show the functional equation (6.2) for Re ν−ρP

strictly �P -dominant.
In fact, when it is done, this allows the meromorphic continuation by standard

arguments (think for example to the function �), and the rest of the theorem follows
relatively easily.

The first step is to prove that, if we have a functional equation (6.2), which is
valid for the restriction of the distributions to H P , then it is valid on G, at least for
ν generic, i.e., outside a certain locally finite family of hyperplanes.
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To achieve this goal, one studies the H -fixed distribution vectors of I P
δ,ν . They

appear as vector-valued distributions on G with covariance properties, and some
results of Bruhat’s thesis allow one to prove that:

for generic ν, every such distribution, which is
zero on H P, i.e., is supported on the complementary
of the dense open set H P, is zero.

(6.3)

This achieves the proof of the first step.
Before finishing describing the proof of Theorem 14, we will give the statement

we used.

6.3 A Result of Bruhat
For the results quoted here, see [War72].
Let � be a Lie group acting smoothly on a smooth manifold X , with a finite

number of orbits. Let (π, V ) be a smooth representation of � in a Fréchet space.
Then � is acting on C∞

c (X, V ) by its action on V . This action is denoted by π̃ . Also
� is acting by left regular representation L .

Let F be the complementary subset of the open �-orbits in X . We define Tk as
the space of T ∈ D′(X, V ) (= C∞

c (X, V )′) such that:

The order of the distribution T is less or equal to k and L ′
γ T = π̃ ′(γ )T, γ ∈ �.

The support of T is contained in F.

If Q is a �-orbit in X , and x0 ∈ Q, the stabilizer �x0 of x0 in � acts on the tangent
space Tx0 X (resp. Tx0 Q) to X (resp. Q), and these actions define an action of �x0

on Ex0 := Tx0 X/Tx0 Q. For any n ∈ N, let Sn
x0

be the n-th symmetric power of this
action on Ex0,n , the n-th symmetric power, Sn Ex0 , of Ex0 . If δ� (resp. δ�x0

) is the

modular function of � (resp. �x0 ), one defines the character ρ�x0
:= (δ−1

� )|�x0
δ�x0

and the representation S̃n
x0

:= ρ−1
�x0

Sn
x0

, in Ex0,n , of �x0 . We denote also by i(V, Q, n)

the dimension of the space of continuous intertwining operators between the repre-
sentations π|�x0

and S̃n
x0

of �x0 .

Theorem 15

dim Tk ≤
∑

Q⊂F,
Q �-orbit

∑
n≤k

i(V, Q, n).

The case where F is a single closed orbit is enlightening: one can use the local
description of distributions supported on a closed submanifold, involving transverse
derivatives.

In our application, � = H × P acts on X = G by

(h, p) · g = hgp−1.
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6.4 Tensoring by Finite-Dimensional Representations and Projection Along In-
finitesimal Characters. End of the Meromorphic Continuation of j(P, δδδ, ννν, ηηη)
Let Z(g) denote the center of the universal enveloping algebra U (g) of gC.

If V is a g-module (or a smooth G-module) which is Z(g)-finite (i.e., for all
v ∈ V , dim Z(g)v < +∞), V is the direct sum of g (or G)-submodules Vχ , where
χ is a character of Z(g) and

Vχ := {v ∈ V | (Z − χ(Z))nv = 0, for some n ∈ N∗, Z ∈ Z(g)} (6.4)

is the generalized eigenspace of Z(g) for the eigenvalue χ . The projection on Vχ

parallel to the other generalized eigenspaces, pχ , is called the projection along the
infinitesimal character χ .

If V is Z(g)-finite, then V ⊗ F is Z(g)-finite (see [Kos75]).
Now, we define:

Definition 10 (Data for tensoring by finite-dimensional representations)

(1) Let (δ, Vδ, η) be a triple such that (δ, Vδ) is an irreducible unitary representation
of M , and η is an M ∩ H -fixed distribution vector of δ.

(2) Let (δ̃, Vδ̃ , η̃) be another triple satisfying the same properties.
(3) Let (π, E) be a finite-dimensional representation of G, with a nonzero H -fixed

vector e∗H in E∗.
(4) Let E1 be the M-module of N -invariants, E N , and let p be the projection along

the infinitesimal character of δ. We assume that

p(V∞
δ̃

⊗ E1) ≈ V∞
δ

as M-modules, and we assume that this isomorphism transforms the restriction
of η̃ ⊗ e∗H to the image of p into η.

Proposition 1 Let ν1 ∈ a∗ be the differential of the action of A on E N .

(i) For ν generic in a∗C, one has

pν(I P
δ̃,ν

⊗ E) ≈ Iδ,ν+ν1

as G-modules, where pν denotes the projection along the infinitesimal character
of Iδ,ν+ν1 .

(ii) This isomorphism transforms the restriction, to the image of pν , of j (P, δ̃, ν, η̃)⊗
e∗H in j (P, δ, ν + ν1, η).

(iii) The projection pν is given by the action of an element of the enveloping algebra.
Moreover, if M acts trivially on F N (hence δ̃ = δ), there is a nonzero polynomial
q on a∗C, and a polynomial map on a∗C with values in Z(g), ν 
→ Zν , expressed
in terms of polynomials in the Casimir element such that q(ν)pν is given by the
action of Zν .
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Idea of the proof of Proposition 1. One uses the fact that the tensor product by a
finite-dimensional representation commutes with induction.

On the other hand, there is a filtration of V as a representation of M AN , with sub-
module E N . Combining all information it is easy to build a nonzero G-equivariant
map from the left-hand side of (i) into the right-hand side. A more careful study of
the induced filtration allows one to conclude the following.

For (ii), one uses similar arguments for the contragredient representations, but
reversing the arrows.

(iii). The first part of (iii) is easy. The second part is proved by looking at the
action of the Casimir on the induced filtration. End of the proof of the functional

equation (6.2). One takes E = Eµ as in Lemma 2. Then E N is one-dimensional,
and the action of M is trivial, δ = δ̃, η = η̃. The statement of (ii) with the help of
(iii) allows one to prove the functional equation (6.2) on H P . Together with the first
step, this allows us to finish the proof of (6.2).

7 Temperedness of H-Fixed Distribution Vectors

The following theorem is due to Flensted-Jensen, Ōshima, Schlichkrull. Its proof
uses properties of boundary values.

Theorem 16 Let (π, Hπ ) be an irreducible unitary representation of G and ξ an
H-fixed distribution vector.

Let βξ be the map from H∞
π into C∞(G/H) defined by

(βξ (v))(gH) = 〈π ′(g)ξ, v〉, g ∈ G.

With the notation as above, the fact that π is irreducible and unitary implies that
βξ (v) is bounded on G/H, for all K -finite vectors v.

We define V(δ)disc as the space of M∩H -fixed distribution vectors, η, of Vδ such
that the map βη, from V∞

δ into C∞(M/M ∩ H), takes its values in L2(M/M ∩ H).

Definition 11 For all ϕ ∈ (Iδ)(K ), η ∈ V(δ), ν ∈ a∗C such that j (P, δ, ν, η) is well
defined, we define the “Eisenstein integral,” as a function on G/H , by

E(P, δ, ν, η, ϕ)(gH) = 〈(π P
δ,ν)

′(g) j (P, δ, ν, η), ϕν〉, g ∈ G,

where ϕν is the element of I P
δ,ν whose restriction to K is ϕ. These are K -finite,

D(G/H)-finite functions.
It follows from Theorem 14(iii) that there exists a nonzero polynomial, p, on a∗C,

product of affine forms α + c, where α is a root of a, c is an element of C, such that
p(ν) j (P, δ, ν, η) and p(ν)E(P, δ, ν, η, ϕ) are holomorphic around ia∗.

The following theorem is due to van den Ban for the case P minimal ([Ban92]).
We will sketch below our proof of the general case (see [Del96]).
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Theorem 17 (Temperedness of “Eisenstein integrals” on the imaginary axis) Let
the notation be as in the preceding definition. For all η ∈ V(δ)disc, ν ∈ ia∗,
p(ν) j (P, δ, ν, η) is tempered, i.e., for all ϕ ∈ (Iδ)(K ), p(ν)E(P, δ, ν, η, ϕ) is a
tempered function on G/H .

Idea of the proof. The proof reduces easily to the case where βη(V∞
δ ) is contained

in an eigenspace of C∞(M/M ∩ H) for D(M/M ∩ H). Let b be a maximal abelian
subspace of m ∩ q containing a∅ ∩ m. Using the Harish-Chandra isomorphism, the
character of D(M/M∩H) by which this algebra acts on βη(V∞

δ ) is attached to some
�δ ∈ b∗C. The theorem of Flensted-Jensen, Ōshima, Schlichtkrull (Theorem 16),
implies that, in the asymptotic expansions or converging expansions (see Theorem
6 and Theorem 7) of “Eisenstein integrals,” certain exponents do not occur. If you
assume a certain technical condition (see below), say �δ is good, then it is easy to
prove that the theorem holds for δ.

Definition 12 We say that �δ is good if and only if, for any element, w, of the Weyl
group of (b ⊕ a)C in gC, such that the linear form on a∅, w�δ |a∅ − ρP∅ is negative
or zero on the Weyl chamber a+P∅ , then w�δ |a∅ is also negative or zero on a+P∅ .

Remark Even if �δ is not good, n�δ is good for n ∈ N∗, large enough.

This allows one to find data for tensoring by finite-dimensional representations
(see Definition 10) with (δ̃, Vδ̃ , η̃) satisfying the same properties as for (δ, Vδ, η),
with �δ̃ good. This choice is made possible by the preceding remark and by the
study, due to D. Vogan ([Vog88]), of the behaviour under translation functors (ten-
soring by a finite-dimensional representation followed by the projection along an
infinitesimal character) of the discrete series, based on their descriptions (see Theo-
rem 12). Moreover, one has to deal with the disconnectedness of G, M , M ∩ H .

One defines, for ν ∈ a∗C

Ẽν := {E(P, δ̃, ν, η̃, ϕ̃) | ϕ̃ ∈ (Iδ̃)(K )},
Eν+ν1 := {E(P, δ, ν + ν1, η, ϕ) | ϕ ∈ (Iδ)(K )}.

These are g and K -submodules of C∞(G/H), with an infinitesimal character χ̃ ,
resp. χ .

Let Ẽ = {ẽ ∈ C∞(G/H)| e ∈ E}, where ẽ(gH) := 〈π∗(g)e∗H , e〉. Let Ẽν · Ẽ be
the linear span of the products of one element of Ẽν with an element of Ẽ . It is also
a Z(g)-finite (g, K )-submodule of C∞(G/H), as a quotient of Ẽν ⊗ Ẽ .

Proposition 2 For ν generic in a∗C, pχ (Ẽν · Ẽ) = Eν+ν1 .

Proof of Proposition 2. It is a consequence of Proposition 1.

Now, there is a criteria for the temperedness of a function due to Ōshima (see
[Ōsh88]), similar to the theory of the discrete series (see Theorem 12).
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Theorem 18 (Ōshima’s Criterion) For a smooth function f on G/H, which is a
K -finite eigenfunction under D(G/H), for the eigenvalue χλ, λ ∈ (ad)∗, regular
and �Pd -dominant, the temperedness (i.e., f ∈ Atemp(G/H), see Definition 5) is
equivalent to a support property of the boundary value βλ( f d) (see Definition 9, §5.2
for notations). The real part of λ enter in this support property.

Remark In a recent work, J. Carmona obtained a proof of this criteria as well as
Ōshima–Matsuki’s results, quoted above, on the discrete series which avoids the use
of hyperfunctions, but uses their geometric lemmas.

Applied to elements in Ẽν (�δ̃ is good, hence Theorem 17 is true for δ̃), this
criteria implies a support property of the boundary values of f d , f ∈ Ẽν with ν

imaginary. This support property extends, by holomorphy, to generic ν in a∗C. Then,
one has to study the behaviour of boundary values under translation functors. One
sees that the support property is preserved, due to the fact that the projection along an
infinitesimal character is given by the action of an element of Z(g), hence is given by
a differential operator. Let the notations be as in Theorem 14. Let η ∈ V(δ). Taking
into account Proposition 2, with some analytic continuation and the reciprocal part
of Ōshima’s criterion, one gets the temperedness for elements of Eν , ν ∈ ia∗.

8 Rough and Sharp Estimates for “Eisenstein Integrals”

The following rough estimates were proved by E. van den Ban for P minimal (cf.
[Ban92], see [CD94] for the general case).

Theorem 19 (Rough Estimates) Let the notations be as in Theorem 14. Let η ∈
V(δ). Let R ∈ R, and pR be as in Theorem 14(iii). Then, there exists r > 0, such
that, for all D ∈ U (g), there exists n ∈ N, C > 0 such that:

|L D pR(ν)E(P, δ, ν, η, ϕ)(k exp X H)| ≤ C Nn(ν)e
(r+‖Re ν‖)‖X‖,

ϕ ∈ Iδ , k ∈ K , X ∈ a∅, ν ∈ a∗(P, R).

The theorem follows from the estimate of the operator norm of π̄ P
δ,λ(a) for vari-

ous norms on Iδ , and from the functional equation 6.2.
Now Theorem 17 and the preceding one, allow one to prove sharp estimates.

For the next theorem, see [Del96] for the general case. For P minimal, it is due to
van den Ban [Ban92]. Our proof uses his technique of successive improvement of
estimates, together with Theorem 17. Notice a similar technique was already used
by N. Wallach (cf. [Wal88], §4.3.5). It rests on a careful study of the differential
equations (4.1).

Theorem 20 (Sharp estimates) Let R > 0 and ε > 0 such that

a∗ε := {ν ∈ a∗C| ‖Re ν‖ < ε} ⊂ a∗(P, R).
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Let ϕ ∈ (Iδ)(K ) and Fν = pR(ν)E(P, δ, ν, η, ϕ). There exists s > 0 such that, for
all D ∈ U (g), there exists n ∈ N, C > 0 such that, for all ν ∈ a∗ε

|pR(ν)L D Fν(x)| ≤ C Nn(ν)Nn(x)�G(x)es Re ‖ν‖ r(x), x ∈ G/H,

where Nn(x) has been defined in (2.5) and Nn(ν) = (1 + ‖ν‖)n .

9 Intertwining Integrals and H-Fixed Distribution Vectors

One has the theory of intertwining integrals (see A. Knapp and E. Stein [KS80], and
also [Kna86] and [Wal88]).

Theorem 21 Let Q be another σθ -stable parabolic subgroup with aQ = a.

(i) There exists a constant cδ > 0 such that, for all ν ∈ a∗(P, cδ) and all ϕ ∈ I P
δ,ν ,

g ∈ G, the following integral converges:

(A(Q, P, δ, ν)(ϕ))(g) =
∫

NQ∩θ(NP )

ϕ(gv) dv,

where dv is a Haar measure on NQ ∩ θ(NP ). Then, A(Q, P, δ, ν)(ϕ) is an

element of I Q
δ,ν .

(ii) The operator A(Q, P, δ, ν) is a continuous intertwining operator between π P
δ,ν

and π
Q
δ,ν . This operator, in the compact realization, is holomorphic in ν ∈

a∗(P, cδ).
(iii) This family A(Q, P, δ, ν) admits a meromorphic continuation in ν, holomorphic

and invertible outside a locally finite family of hyperplanes of a∗C.

Proposition 3 There exists a meromorphic family of endomorphisms, B̃(P, Q, δ, ν),
of V(δ), such that, denoting by A′(Q, P, δ, ν) the transposed map of A(Q, P, δ, ν),
one has

A′(Q, P, δ, ν) j (Q, δ, ν, η) = j (P, δ, ν, B̃(P, Q, δ, ν)η),

as an identity of meromorphic functions of ν ∈ a∗C
Proof. The left-hand side is an H -fixed distribution vector of π P

δ,ν . The significance
of (6.4) is that, for generic ν, this left-hand side is of type j (P, δ, ν, η̃) for some
η̃ ∈ V(δ). One defines B̃(P, Q, δ, ν)η := η̃ and one verifies that this B-matrix has
the required property. E. van den Ban introduced this B-matrix for P = P∅. Earlier,
in an important announcement, [Ōsh81], T. Ōshima introduced C-functions which
seem related to the B-matrix.

As a consequence of Theorem 21, one has (see [Del96]):

Theorem 22 For generic ν ∈ ia∗ or a∗C, B̃(P, Q, δ, ν) preserves V(δ)disc and its
restriction to V(δ)disc is denoted by B(P, Q, δ, ν) (small B-matrix).
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10 τττ -Spherical Functions and K-Finite Functions: A Dictionary

Let f be a K -finite smooth function on G. Its left translates by K generate a finite-
dimensional representation (τ1, Vτ1) of K . For simplicity, we assume τ1 irreducible.

Every K -finite function is a sum of such functions.
Let Vτ := V ′

τ1
⊗ Vτ1 and τ := τ ′1 ⊗ 1. If v′ ∈ V ′

τ1
, v ∈ Vτ1 , we define

cv,v′(k) = 〈τ ′1(k)v′, v〉, k ∈ K .

The linear map from Vτ to C∞(K ), defined by v′ ⊗v 
→ cv,v′ , allows one to identify
Vτ as a subspace of C∞(K ), the representation τ corresponding to the action of K by
right translations. It is unitary when C∞(K ) is endowed with the L2 scalar product.

Now, we define � : G → C∞(K ) by

(�(g))(k) = f (kg), k ∈ K , g ∈ G. (10.1)

Then

� takes its values in Vτ and

�(kg) = τ(k)�(g), k ∈ K , g ∈ G.
(10.2)

One recovers f from � by the formula

f (g) = (�(g))(e), g ∈ G. (10.3)

The proof is left as an exercise.
Then

� is called the τ -spherical version of f and is denoted fτ . (10.4)

It is sometimes technically easier, and in particular for notations, to use τ -spherical
functions. Especially, a τ spherical function on G/H is determined by its restriction
to A∅ because G = K A∅H (see (1.5)).

Roughly speaking, Eisenstein integrals are the τ -spherical version of “Eisenstein
integrals”. For the rest of the chapter, we will essentially need only this statement
(see below).

The spaces A(G/H), Atemp(G/H), A2(G/H) . . . have obvious τ -spherical
analogues A(G/H, τ ), Atemp(G/H, τ ), A2(G/H, τ ) . . .

The following theorem (see [Del97b]) is deduced from the theory of discrete
series (Theorem 12), from the behaviour, already mentionned, of discrete series un-
der certain translation functors (see [Vog88]), and a result of H. Schlichtkrull on the
minimal K -types of discrete series, [Sch83].

Theorem 23 The space A2(G/H, τ ) is finite dimensional.

We come back to the induced representation.
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Definition 13 For each ϕ ∈ (Iδ)(K ) and η ∈ V(δ)disc, assume that ϕ transforms
under K by the irreducible representation of K , τ1. Then ϕ, which is a smooth map
from K to V∞

δ , admits a τ -spherical version ϕτ from K to V∞
δ ⊗ Vτ . Then one

defines

ψϕτ⊗η(m) = 〈δ′(m)η, ϕ(e)〉.

Then ψϕτ⊗η is an element of A2(M/M ∩ H, τ ) and every element of A2(M/M ∩
H, τ ) is a linear combination of functions of this type, as δ and η vary.

The following definition is not the usual definition of Eisenstein integrals. But it
is the most useful point of view for us (see [CD98]).

Definition 14 (Eisenstein integrals) Let ψ ∈ A2(M/M ∩ H, τM ) (where τM =
τ| K∩M ) of the type ψϕτ⊗η as above. Then the Eisenstein integral E(P, ψ, ν) is de-
fined by the relation

E(P, ψ, ν) = (E(P, δ, ν, η, ϕ))τ .

11 Constant Term of τττ -Spherical Tempered Functions

The following theorem is due to Harish-Chandra for the group case [HC75] and to J.
Carmona, [Car97], in general.

Theorem 24 There exists a map

Atemp(G/H, τ ) −→ Atemp(L/L ∩ H, τM )

� 
−→ �P

where τM = τ| M∩K , characterized by the following property:

For all X ∈ a, which is strictly �P -dominant, one has, for all l ∈ L,

lim
t→+∞(det(Ad l(exp t X))|nP )

1/2�(l(exp t X)H)−�P (l(exp t X)L ∩ H) = 0.

�P is called the constant term of � along P .

Idea of the proof. The asymptotic expansions along P (see Theorem 6) are valid also
for τ -spherical functions. The idea is to select the terms pξ for which ξ is an element
of ia∗. There are finitely many such terms. Then, one takes their sum, with X = 0,
with g = l ∈ L . This is just �P (l).
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12 IIIIII ′′′holholhol-Families. Wave Packets in the Schwartz Space

12.1 IIIIII ′′′holholhol (G, L, τττ ) I will introduce families of functions depending on ν ∈ a∗C,
II ′hol -families (see [BCD96]). These are families very similar to Eisenstein integrals
but “more regular”.

Space II ′hol(G, L , τ ).
An element of II ′hol(G, L , τ ) involves

(1) A family, ν 
→ F(ν), holomorphic in a tube around ia∗, of D(G/H)-finite, τ -
spherical functions, tempered for ν ∈ ia∗.

(2) For Q a σθ -stable parabolic subgroup of G, and ν ∈ ia∗, the constant term
FQ(ν) (:= F(ν)Q) is well defined and admits a decomposition

FQ(ν) =
∑

s∈W (aQ ,a)

FQ,s(ν). (12.1)

Here W (aQ, a) is the set of linear maps from aQ to a, induced by elements in
the complex adjoint group of gC, and

(FQ,s(ν))(maMQ ∩ H) = aνs
(FQ,s(ν))mMQ ∩ H),

m ∈ MQ, a ∈ AQ,
(12.2)

with νs = ν ◦ s.
(3) The FQ,s satisfy 1), 2) with respect to L Q/L Q ∩ H .

The complete definition requires also control of the action of D(G/H) and uniform
estimates (as in Theorem 20). Similar families were introduced by Harish-Chandra,
[HC76a], but without the holomorphic property. He called them II ′. This explains
our terminology. The use of holomorphic families was suggested by the work of van
den Ban(see [Ban92]).

The theory of the constant term for families, as developed in [Car97], and the
Theorem 20 allow one to prove the following theorem (see [BCD96], see also
[HC76a] for the group case). Eisenstein integrals usually are not II ′hol , but we have
(see [BCD96]).

Theorem 25 There exists a nonzero polynomial on a∗C, p, such that, for all ψ ∈
A2(M/M ∩ H, τ ), ν 
→ p(ν)E(P, ψ, ν) is II ′hol(G, L , τ ).

So the results for II ′hol -functions apply to Eisenstein integrals.

12.2 Wave Packets in the Schwartz Space

Theorem 26 Let F be an element of II ′hol(G, L , τ ). For any element, a, of the
Schwartz space S(ia∗), the integral

Wa⊗F (gH) :=
∫

ia∗
a(ν)(F(ν))(gH) dν

converges absolutely. Moreover, the function Wa⊗F is an element of C(G/H, τ ).
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Idea of the proof. (see [BCD96]) For every X in the closure of the intersection of
the unit sphere with the Weyl chamber, a+P∅ , one defines a σθ -parabolic subgroup,
Q, containing P∅, for which L Q is equal to the centralizer of X . Then, for t ≥ 0 and
Y in a neighbourhood of X in the unit sphere, one approximates F(ν)(exp tY ) by
(FQ(ν))(exp tY ). The estimate of the difference is possible, because of the theory of
the constant term for families of functions (see [Car97]).

13 Truncation

13.1 Truncated Inner Products Hypothesis to simplify notations in this para-
graph:

The intersection of a∅ with the center of g is reduced to zero.

Let T ∈ a∅, regular. Let W (a∅) := W (a∅, a∅), which is also the Weyl group of the
system of roots of a∅ in g. We define a subset ST of G/H :

ST := {k(exp X)H | k ∈ K , X is in the convex hull of W (a∅)T }. (13.1)

We denote by

u(·, T ) the characteristic function of ST . (13.2)

Now, we fix P , P ′, σθ -stable parabolic subgroups of G, containing P∅, and let P =
M AN , P ′ = M ′A′N ′ their σ -Langlands decompositions.

The following theorem (see [Del97b]) is very important for our proof of the
Plancherel formula. Except for a point mentioned below (see Lemma 4), the proof is
borrowed from the work of J. Arthur on the local trace formula, [Art91].

Theorem 27 Let F ∈ II ′hol(G, L , τ ), F ′ ∈ II ′hol(G, L ′, τ ).

(i) When T goes to infinity far from the walls, i.e., T is contained in some closed
convex cone contained in an open Weyl chamber, there exists C, ε > 0, and
k ∈ N such that

|�T (F, F ′, ν, ν′)− ωT (F, F ′, ν, ν′)|
≤ C(1 + ‖ν‖)k(1 + ‖ν′‖)ke−ε‖T ‖, (ν, ν′) ∈ ia∗ × ia′∗,

where

�T (F, F ′, ν, ν′) :=
∫

G/H
u(x, T )(F(ν)(x), F ′(ν′)(x)) dx, (13.3)

ωT (F, F ′, ν, ν′)

:=
∑

Q∈P(a,a′)

∑
s∈W (aQ ,aM ),

s′∈W (aQ ,aM ′ )

(FQ,s(ν), F ′
Q,s′(ν

′))e(ν
s−ν′s′ )(TQ)θQ(νs − ν′s

′
)−1.

Here:
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(1) P(a, a′) denotes the set of σθ -stable parabolic subgroups of G, Q, contain-
ing P∅ and such that aQ is conjugate under K to a and a′.

(2) (FQ,s(ν), F ′
Q,s′(ν

′)) is equal to the L2 scalar product of the restriction to
MQ/MQ ∩ H of these functions (the hypothesis on aQ implies that they are
square integrable).

(3) TQ is the orthogonal projection on aQ of a suitable W (a∅)-conjugate of T .
(4) θP (λ) = d−1

P

∏
α∈�Q

(λ, α), λ ∈ a∗Q, where dP is a certain constant and
�Q is the set of simple roots of aQ in nQ .

(ii) Moreover, ωT (F, F ′, ν, ν′), which is a sum of terms that do have singularities,
is analytic on ia∗ × ia′∗.

Idea of the Proof. One proceeds by induction on the dimension of [g, g]. One sets
�T (ν, ν′) = �T (F, F ′, ν, ν′) − ωT (F, F ′, ν, ν′) which is only defined for (ν, ν′)
element of the complementary Hc of a finite set of hyperplanes in ia∗ × ia′∗. One
proves, by induction on the dimension of [g, g],

Lemma 3 For r ≥ 0, T as in the theorem, and S in the same Weyl chamber as T
such that ‖S‖ ≤ r‖T ‖, there exists C > 0 such that

|�T+S −�T | ≤ C(1 + ‖ν‖)k(1 + ‖ν′‖)ke−ε‖T ‖, (ν, ν′) ∈ Hc. (13.4)

The idea is to divide the intersection with the Weyl chamber a+P∅ of the differ-
ence of the closed convex hull of W (a∅)(T + S) with the closed convex hull of
W (a∅)T into some family of subsets, CQ , depending on a σθ -stable parabolic sub-
group containing P∅, Q, such that F(ν)(exp X H), X ∈ CQ , is well approximated by
FQ(ν)((exp X)L ∩ H). Then one uses the induction hypothesis.

Corollary 1 For any compact subset U of ia∗ × ia′∗, there exists a uniform limit for
�T (ν, ν′), on U ∩Hc, �∞(ν, ν′), when T goes to infinity as in the theorem, and

|�∞(ν, ν′)−�T (ν, ν′)| ≤ C ′(1 + ‖ν‖)k(1 + ‖ν′‖)ke−ε′‖T ‖,

for some C ′, ε′ > 0.

Thus, if one is able to prove that �∞ is identically zero, this will prove the first
part of the theorem. Using the continuity of �∞, it suffices to prove that it is zero on
a dense open subset U of Hc.

For this purpose, one studies

α∗ :=
∫

U
a(ν)a′(ν′)�∗(ν, ν′) dνdν′,

where ∗ = T or ∞ and a ⊗ a′ ∈ C∞
c (U ).

Our problem is reduced to prove α∞ = 0. But α∞ = limT→∞ αT and
�T (ν, ν′) = �T (F, F ′, ν, ν′)− ωT (F, F ′, ν, ν′). One studies each term separately.
The limit of the term involving ωT , when T goes to infinity, is zero: it is a con-
sequence of the fact that the Fourier transform of a smooth compactly supported
function is rapidly decreasing.
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For the term involving �T , the limit is also zero. This is a consequence of the
following lemma on wave packets. This argument replaces the use of the Plancherel
formula by J. Arthur, in the group case.

Lemma 4 For a ∈ C∞
c (ia∗), the wave packet Fa := Wa⊗F (see Theorem 26) is an

element of C(G/H, τ ). For ν′ ∈ ia′∗, one defines

Tν′(a) =
∫

G/H
(Fa(x), F ′(ν′)(x)) dx .

The integral converges, because F ′(ν′) is tempered. Then Tν′ is a distribution on ia∗,
and its support is contained in a finite set, depending in a simple manner on F, F ′
and ν′.

The proof (see [Del97b]) uses the action of D(G/H) on C(G/H, τ ) (Theorem
1), Atemp(G/H, τ ) and the pairing between these two spaces (see Theorem 2).

End of the proof of Theorem 27. One sees that the limit of the term in αT involving
�T (F, F ′, ν, ν′), when T goes to infinity, is precisely∫

ia′∗
a′(ν′)Tν′(a) dν′.

Thus, one understands why support properties of a ⊗ a′ allow one to prove that this
contribution is zero. This finishes the proof of the first part of the theorem.

As it is clear that �T (F, F ′, ν, ν′) is locally bounded for (ν, ν′) around ia∗×ia′∗,
the inequality of the theorem shows that ωT (F, F ′, ν, ν′) is also locally bounded
around ia∗ × ia′∗. Then, (ii) is an easy consequence of this and the explicit form of
ωT .

13.2 Maass–Selberg Relations for Functions IIIIII ′′′holholhol

Theorem 28 Let F ∈ II ′hol(G, L , τ ). Let P, Q be σθ -stable parabolic subgroups
containing A∅ with L P = L Q = L . Then, one has

‖FP,s(ν)‖2 = ‖FQ,s′(ν)‖2, s, s′ ∈ W (a), ν ∈ ia∗.

Here, ‖FP,s(ν)‖2 is the L2-norm of the restriction to M/M ∩ H of the function
FP,s(ν) introduced in the definition of II ′hol(G, L , τ ) (see §12.1).

Proof. As ‖FQ,s(ν)‖2 is equal to ‖FQs ,1(ν)‖2, due to “transport de structure”, one
is reduced to prove the equality for s = s′ = 1. There is also a reduction to the
case where P and Q are adjacent, i.e., when the roots of a in θ(nP ) ∩ nQ are all
proportional. Using hereditary properties of the constant term, one can reduce the
proof to the case where Q = θ(P) and dim a = 1. Then, due to its definition (see
Theorem 27), ωT (F, F ′, ν, ν′) is a sum of the product of an analytic function of
(ν, ν′) by (ν−ν′)−1 and of the product of an analytic function of (ν, ν′) by (ν+ν′)−1.
Due to the analyticity, the term in front of (ν − ν′)−1 has to be zero when ν = ν′.
When this is written explicitly, it leads to the Maass–Selberg relations. For this, one
has to distinguish the cases where W (a) has one or two elements.
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13.3 “Fourier Transform” of Wave Packets The holomorphy of ωT (F, F ′, ν, ν′)
around ia∗ × ia′∗ allows one to express, for fixed ν′, its restriction to ia∗ as a sum of
distributions involving Fourier transform of characteristic functions of cones. For �
real in a∗,

ωT (F, F ′, ν, ν′) = lim
t→0

ωT (F, F ′, ν + t�, ν′).

For a suitable �, each term in the definition of ωT (F, F ′, ν+t�, ν′) is a well-defined
analytic function on t�+ ia∗, t > 0, because θP (ν+ t�) = d−1

P

∏
α∈�Q

(ν+ t�,α).
Thus, it is just the question of seeing what happens when t goes to 0. When dim a =
1, distributions like 1/(x ± i0) occur. It is more pleasant for applications to state the
result with Fourier transform of characteristic functions of cones.

Notations:
Let Q be a σθ -stable parabolic subgroup of G containing A∅, with aQ = a.

Recall that �Q is the set of simple roots of aQ in nQ . We denote by {ωα|α ∈ �Q}
the dual basis of �Q in a∗ (we identify a and a∗ with the help of the bilinear form
B).

Let β�
Q be equal to the number of elements of {α ∈ �Q | 〈�,α〉 < 0}. We set

C�
P = {X ∈ a| 〈ωα, X〉〈�,α〉 > 0, α ∈ �P } and TQ is the projection on a of

a conjugate of T , under W (aQ), T ′, such that T ′ is P ′
∅-dominant, where P ′

∅ is a
minimal σθ -stable parabolic subgroup, which contains A∅ and is contained in Q.

Now, ��
Q,TQ

is the characteristic function of the translate of C�
Q by −TQ ,

C�
Q − TQ , and �̂�

Q,TQ
is its Fourier transform. Then the following theorem is an

easy corollary of Theorem 27.

Theorem 29 With these notations, as a distribution of ν, for fixed ν′,

ωT (F, F ′, ν, ν′)

:=
∑

Q∈P(a,a′)

∑
s∈W (aQ ,aM ),

s′∈W (aQ ,aM ′ )

(FQ,s(ν), F ′
Q,s′(ν

′))(−1)β
�
Qs �̂�

Qs ,TQs (ν − ν′s
′s−1

),

where Qs = s Qs−1.

This theorem has an immediate application to the “Fourier transform” of wave
packets (see [Del97b]).

Theorem 30 Let F, F ′ be as above. Let a be an element of S(ia∗). It follows from
Theorem 26 and Theorem 2 that, for ν ∈ ia′∗, the integral

(Fa, F ′(ν′)) =
∫

G/H
(Fa(x), F ′(ν′)(x)) dx

is converging.
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If a and a′ are not conjugate under K , this integral is zero. On the other hand, if
P = P ′, it is equal to ∑

x∈W (a)

a(ν′ x )(FP,1(ν
′ x ), F ′

P,x (ν
′)).

Proof. One writes, using the Lebesgue dominated convergence theorem,∫
G/H

(Fa(x), F ′(ν′)(x)) dx = lim
T→∞

∫
ia∗

a(ν)�T (F, F ′, ν, ν′) dν. (13.5)

Then, using the fact that �T is asymptotic to ωT , when T goes to infinity, one can
replace �T by ωT in (13.5). Then one uses the preceding theorem together with the
following remark on cones:

If C is an open cone in a and S an element in a, let 1C−t S be the character-
istic function of the translate of C by −t S.
Then

if S ∈ C, limt→+∞ 1C−t S = 1 in S ′(a)if S /∈ C, limt→+∞ 1C−t S = 0 in S ′(a).

This translates to the Fourier transform.

14 First Application to Eisenstein Integrals. Regularity Theorem
for Eisenstein Integrals

Theorem 26 and the Definition of II ′hol -functions imply easily:

Theorem 31 Let P = M AN be as above and Q a σθ -stable parabolic subgroup
such that aQ = a. There exists unique meromorphic functions on a∗C, CQ|P (s, ν),
with values in EndA2(M/M ∩ H, τM ) such that, for all ν in an open dense subset
of ia∗, and ψ ∈ A2(M/M ∩ H, τM ),

E(P, ψ, ν)Q(maM ∩ H) =
∑

s∈W (a)

(CQ|P (s, ν)ψ)(mM ∩ H)a−sν .

Actually, the C-functions can be described precisely in terms of intertwining
integrals (see below §15). This allows one to show that they are invertible endomor-
phisms of A2(M/M ∩ H, τM ), for generic ν.

The following definition and the following theorems are due to Harish-Chandra,
[HC76a], [HC76b], in the group case, and to van den Ban and Schlichtkrull for P
minimal (see [BS97a]).

Definition 15 The normalized Eisenstein integrals are defined by

E0(P, ψ, ν) := E(P,CP|P (1, ν)−1ψ, ν),

as a meromorphic function of ν.
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Replacing E by E0 in the preceding theorem, one can introduce C0-functions for
E0.

Recall that, for some nonzero polynomial pψ , on a∗C, ν 
→ pψ(ν)E(P, ψ, ν) is
an element of II ′hol(G, M, τ ).

Together with Theorem 28, it leads immediately to the first part of the following
theorem (see [CD98]). The second part is an easy corollary of the first part.

Theorem 32 (Maass–Selberg relations for Eisenstein integrals)

(i) For Q, Q′ σθ -stable parabolic subgroups with aQ = aQ′ = a and s, s′ ∈ W (a),
one has

‖CQ|P (s, ν)ψ‖2 = ‖CQ′|P (s′, ν)ψ‖2,

ν ∈ ia∗, ψ ∈ A2(M/M ∩ H, τM ).
(ii) C0

Q|P (s, ν) is an unitary endomorphism of A2(M/M ∩ H, τM ), for ν ∈ ia∗.

The second part of this theorem shows that the C-functions, for normalized
Eisenstein integrals, are locally bounded for ν ∈ ia∗. This implies that they are
holomorphic around the imaginary axis. These properties of the constant term of
normalized Eisenstein integral together with a result on intertwining integrals (see
Theorem 34 below), due to Wallach (see [Wal92], Chapter 10, when δ is a discrete
series for G, this result is due to Harish-Chandra, [HC76b]), lead to the following
theorem (see [CD98]). Harish-Chandra treated the group case ([HC76a]), van den
Ban, Schlichtkrull treated the case where P is minimal ([BS97a])).

Theorem 33 (Regularity Theorem for normalized integrals)

(i) The normalized Eisenstein integrals are holomorphic for ν in a neighbourhood
of ia∗.

(ii) The normalized Eisenstein integrals are elements of II ′hol(G, L , τ ).

Notice that this theorem plays an important role in my proof as well in the proof
of van den Ban and Schlichtkrull of the Plancherel formula. First, they had to use our
result with J. Carmona. More recently, they obtained independent proof.

Here is the theorem on intertwining integrals mentioned above (see [Wal92]).

Theorem 34 Let P̄ = θ(P). Then,

A(P, P̄, δ, ν)A(P̄, P, δ, ν) = µP (δ, ν)
−1Id,

where µP (δ, ν) is a meromorphic function on a∗C, holomorphic in a neighbourhood
of ia∗, positive or zero on ia∗, and bounded on ia∗ by a polynomial in ‖ν‖.
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15 Expression of C-Functions

For s ∈ W (aP ), because of the simplifying hypothesis (1.4), we can select s̃ ∈
K ∩ H , normalizing a∅ and inducing s on aP . Hence s̃ normalizes M ∩ H .

We define an endomorphism R(s̃) of A2(M/M ∩ H, τM ) by setting

(R(s̃)ψ)(mM ∩ H) = τ(s̃)ψ(s̃−1ms̃ M ∩ H),

ψ ∈ A2(M/M ∩ H, τM ), m ∈ M.
(15.1)

The operator R(s̃) does not depend on the choice of s̃, and will be denoted R(s).
Also

s̃ Ps̃−1 does not depend on s̃ and is denoted by Ps . (15.2)

The following theorem (see [CD98] for the general case, [HC76b] for the group case,
[BS97a] for P minimal) describes the properties of C-functions.

Theorem 35 We keep the notations of §14. In the theorem, all equalities are equali-
ties of meromorphic functions in ν ∈ a∗C.

(i) C0
Q|P (s, ν) = CQ|P (s, ν) ◦ CP|P (1, ν)−1.

(ii) The following relations, valid for C# equals to C or C0, allow one to reduce the
computation of the C#-functions to C#

Q|P (1, ν).
Let s, t ∈ W (a). One has

C#
Q|P (t, ν) = R(s)C#

Qs−1 |P (s
−1t, ν),C#

Q|Ps (ts−1, ν) ◦ R(s) = C#
Q|P (t, ν).

(iii) With the notations as in Definition 13, let ϕ ∈ Iδ of type τ , η ∈ V(δ)disc,

CQ|P (1, ν)ψϕτ⊗η = ψ(A(Q,P,δ,ν)ϕ)τ⊗B(Q̄,P,δ,ν)η,

C0
Q|P (1, ν)ψϕτ⊗η = ψ(A(Q,P,δ,ν)ϕ)τ⊗B(P̄,Q̄,δ,ν)−1η.

(iv) Functional equation:

E0(Q,CQ|P (s, ν)ψ, ν) = E0(P, ψ, ν).

Proof. Part (i) and (ii) are essentially formal properties. The proof of (iii) reduces
to the case where P = Q̄. This case is treated separately. For ν with Re ν − ρP

strictly �P -dominant and X ∈ a strictly �P̄ -dominant, it is possible (see [Del96]) to
compute

lim
t→+∞ e(ν−ρP )(t X)E(P, ψϕτ⊗η, ν)(g(exp t X)H). (15.3)

This is a generalization of a classical and important lemma due to Langlands (cf.
e.g., [BW80]). This allows one to determine the C-functions for ν in an open subset
of a∗C. One finishes the proof by meromorphic continuation.

The functional equation follows from the definition of Eisenstein integrals and
the properties of the C-functions quoted above.
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16 Normalized Fourier Transform of the Schwartz Space and
Normalized Fourier Inversion Formula for τττ -Spherical
Functions

The following theorem is a consequence of the fact that normalized Eisenstein inte-
grals are II ′hol (see [CD98], originally due to van den Ban and Schlichtkrull for P
minimal).

Theorem 36 (Definition of the normalized Fourier transform) Let P be as above.
For f ∈ C(G/H, τ ), there exists a unique element F0

P f ∈ S(ia∗) ⊗ A2(M/M ∩
H, τM ) such that

((F0
P f )(ν), ψ) =

∫
G/H

( f (x), E0(P, ψ, ν)(x)) dx,

ν ∈ ia∗, ψ ∈ A2(M/M ∩ H, τM ).
The image of F0

P is contained in the space S0
P (τ ) of elements � of S(ia∗) ⊗

A2(M/M ∩ H, τM ) such that

�(sν) = CP|P (s, ν)�(ν), ν ∈ ia∗. (16.1)

As a corollary of Theorem 26 and Theorem 32, one has

Theorem 37 If � is an element of S(ia∗)⊗A2(M/M ∩ H, τM ), the wave packet

(I0
P�)(x) :=

∫
ia∗

E0(P, �(ν), ν)(x) dx, x ∈ G/H,

is well defined and I0
P� is an element of the Schwartz space C(G/H, τ ).

Definition 16 We choose a set, F, of σθ -stable parabolic subgroups containing A∅,
such that, for all σθ -stable parabolic subgroup, Q, there exists a unique P ∈ F, such
that aP and aQ are conjugate under K . Notice that F is unique.

Now Theorem 30 allows one to compute F0
PI0

P . One has easily that, if P, P ′ ∈ F
and P �= P ′, F0

P ′I0
P = 0. Moreover, F0

PI0
P is a multiple of the identity. One deduces

from this the following theorem (see [CD98]).

Theorem 38 Let

Pτ :=
∑
P∈F

#|W (aP )|−1I0
PF0

P .

It is an orthogonal projection in C(G/H, τ ), endowed with the L2 scalar product.

The following theorem achieves the goal of writing elements in C(G/H, τ ) in
terms of D(G/H)-eigenfunctions (i.e., as sums of wave packets of Eisenstein inte-
grals). This is our first form of the Plancherel formula (see [Del98]).
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Theorem 39 The projection Pτ is the identity operator on C(G/H, τ ). In other
words, for f ∈ C(G/H, τ ) and x ∈ G/H,

f (x) =
∑
P∈F

(#W (aP ))
−1
∫

ia∗
E0(P, (F0

P f )(ν), ν)(x) dν.

Moreover the image of ⊕P∈FF0
P is equal to ⊕P∈FS0

P (τ ).

Remark Notice that the contribution of P minimal, in the above formula, was de-
termined earlier by van den Ban and Schlichtkrull in [BS97b] by different methods,
which led them to the proof of the Plancherel formula and of the Paley–Wiener the-
orem (see the introduction).

Sketch of the proof. If Pτ were not the identity, going back to the K -finite functions,
one would find, with the help of the disintegration of Theorem 8 and of standard ar-
guments, a nonzero element � of Atemp(G/H, τ ), which is orthogonal to the image
of Pτ . Then, one can generalize Theorem 27, on truncated inner products, by replac-
ing F ′(ν′) by �. The statement is different because the constant term of � does not
necessarily have a decomposition as that of F ′(ν′) (cf. (12.1)). Then, using an ex-
tension of Theorem 30, this orthogonality of � to the image of Pτ can be explicitly
described. As a result, � has to be zero, a contradiction which proves the theorem.

17 Plancherel Formula and Fourier Transform of the Schwartz
Space of K-Finite Functions

With data as in §6.1, one defines the normalized H -fixed distribution vectors :

j0(P, δ, ν, η) = (A(P, P̄, δ, ν)−1)′ j (P̄, δ, ν, η),

where P̄ = θ(P).
One defines the “normalized Eisenstein integrals” E0(P, δ, ν, η, ϕ), ϕ ∈ Iδ , by

changing j in j0 in the definition of “Eisenstein integrals” (see Definition 11).
Let f be an element of C(G/H)(K ) and let ν be an element of ia∗. There exists

a unique element, (F0
P f )(δ, ν), of (Iδ)(K ) ⊗ V(δ)disc such that

((F0
P f )(δ, ν), ϕ ⊗ η)

=
∫

G/H
f (x)E0(P, δ, ν, η, ϕ)(x) dx, ϕ ∈ (Iδ)(K ), η ∈ V(δ)disc.

(17.1)

One defines the space

(S1
P )(K ) = S(ia∗)⊗

(⊕
δ ∈ M̂(Iδ)(K ) ⊗ V(δ)disc

)
,

on which K acts by left regular representation on (Iδ)(K ). One denotes by H1
P the

Hilbert completion of (S1
P )(K ) for the natural scalar product.
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One defines a representation πP of g in (S1
P )(K ) by setting

πP (X)(a ⊗ ϕ ⊗ η)(ν) = a(ν)(π̄ P
δ,ν(X)ϕ)⊗ η,

X ∈ g, ν ∈ ia∗, a ∈ S(ia∗), δ ∈ M̂, ϕ ∈ (Iδ)(K ), η ∈ V(δ)disc.

Then (S1
P )(K ) is a (g, K )-module. One defines similarly a unitary representation of

G in H1
P . One remarks that this representation of G is unitarily equivalent to

⊕̂
δ∈M̂

∫ ⊕

ia∗
π̄ P
δ,ν ⊗ IdV(δ)disc dν.

Here ⊕̂ means the Hilbert sum.
One denotes by F0

P the linear map from C(G/H)(K ) in (S1
P )(K ) whose δ-

component is just the map f 
→ (F0
P f )(δ, ·). This is a (g, K )-module map (see

[CD98]).
The following result is the K -finite version of Theorem 37.
There exists a unique linear map, I0

P , from (S1
P )(K ) into C(G/H)(K ) such that,

for all δ ∈ M̂, a ∈ S(ia∗), ϕ ∈ (Iδ)(K ) and η ∈ V(δ)disc, one has

I0
P (a ⊗ ϕ ⊗ η) =

∫
ia∗

a(ν)E0(P, δ, ν, η, ϕ) dν.

Now we will describe symmetry conditions satisfied by the normalized Fourier
transform which is just the transcription for K -finite functions of (16.1). They are
obtained by using the explicit description of C0-functions (see Theorem 35). These
conditions are a little bit more technical. We give them for sake of completeness.

Let s ∈ W (a). As remarked before (15.1), our hypothesis (1.4) implies that one
can select s̃ in the normalizer on K ∩ H of a∅, inducing s on a.

One defines a morphism R(δ, s̃) from Iδ ⊗ V(δ)disc into Iδs̃ ⊗ V(δs̃)discdefined
by

R(δ, s̃)(ϕ ⊗ η) = R(s̃)ϕ ⊗ η, ϕ ∈ Iδ, η ∈ V(δ)disc. (17.2)

Here R is the right regular representation of G. One has used that, as s̃ is in K ∩ H
and normalizes M , V(δ)disc = V(δs̃)disc.

One defines an operator in (S1
P )(K ), UP (s̃), by

(UP (s̃))�(δ, ν)

= R(δs̃−1
, s̃)(A(Ps−1

, P, δ, s̃−1, s−1ν)⊗ B(P̄, P̄ s̃−1
, s−1ν)−1)�(δs̃−1

, s−1ν),

(17.3)

for all � ∈ (S1
P )(K ), δ ∈ M̂ , ν ∈ ia∗.

Actually UP (s̃) does not depend on the choice of s̃ and is denoted by UP (s).
Then UP is a representation of W (a) by isometries. One denotes by (S0

P )(K ) the
subspace of invariant elements in (S1

P )(K ) by this action of W (a).
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Let H0
P be the closure of (S0

P )(K ) in H1
P . By continuity, one has a unitary repre-

sentation U P of W (a) in H1
P and one has

H0
P = (H1

P )
W (a).

One sets S•
(K ) = ⊕P∈F(S•

P )(K ) and H• = ⊕P∈FH•
P , where • stands for 0 or 1. For

f ∈ C(G/H)(K ), one defines

F0 f := ((#W (aP ))
−1/2F0

P f )P∈F ∈ S1
(K ). (17.4)

Let I0 be the linear map from S1
(K ) to C(G/H)(K ) whose restriction to (S1

P )(K ) is

(#W (aP ))
−1/2I0

P .
The following theorem is the K -finite version of Theorem 38 ( see [Del98]).

Theorem 40

(i) F0 is an isometric isomorphism from C(G/H)(K ), endowed with the L2 scalar
product, onto the orthogonal sum S0

(K ) of the (S0
P )(K ). Its inverse is the restric-

tion of I0 to S0
(K ).

(ii) The map F0 has a continuous extension, F0
, which is a unitary operator be-

tween L2(G/H) and H0, intertwining the represenattions of G.
Let I0 be the continuous extension of I0. Its restriction to H0 is just the inverse

mapping to F0
.

(iii) Let δeH be the Dirac measure in eH on G/H . One has the equality of distribu-
tion vectors

δeH ◦ I0 | (H1)∞ =
∑
P∈F

∑
δ∈M̂P

dim(V(δ)disc)∑
i=1

∫ ⊕

ia∗P
j0(P, δ, ν, ηi )⊗ ηi dν.

Here (ηi ) is an orthonormal basis of V(δ)disc.

Remark If one selects, for all P ∈ F, a fundamental domain for the action of W (aP )

on ia∗P , that we denote by ia∗P/W (aP ), taking into account the symmetry conditions
(17.3), Theorem 40(ii) shows that the left regular representation of G in L2(G/H)

is unitarily equivalent to the representation⊕
P∈F

⊕
δ∈M̂P

∫ ⊕

ia∗P/W (aP )

π P
δ,ν ⊗ IdV(δ)disc dν.

If (π, Hπ ) is a continuous unitary representation of G, the space of distribution
vectors H−∞

π is just the topological dual of the space of C∞-vectors H∞
π . Using the

scalar product, Hπ can be embedded antilinearly in H−∞
π . Now one has

π ′(ϕ)ξ ∈ H∞
π if ϕ ∈ C∞

c (G) and ξ ∈ H−∞
π
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or if ϕ ∈ C∞
c (G/H) and ξ ∈ (H−∞

π )H . (17.5)

If P ∈ F, δ ∈ M̂P , η ∈ V(δ)disc, and ν ∈ ia∗P , one defines a distribution 0
P�

η,η
δ,ν on

G/H by

0
P�

η,η
δ,ν ( f ) = 〈(π P

δ,ν)
′( f ) j0(P, δ, ν, η), j0(P, δ, ν, η)〉, f ∈ C∞

c (G/H).

(17.6)

One defines also P�
η,η
δ,ν by replacing j0 by j in the preceding definition.

Corollary of Theorem 40

(i) For f ∈ C∞
c (G/H),

f (eH) =
∑

P∈F,δ∈M̂P

dim(V(δ)disc)∑
i=1

(#W (aP ))
−1
∫

ia∗P

0
P�

ηi ,ηi
δ,ν ( f ) dν,

where (ηi ) is an orthonormal basis of V(δ)disc.
(ii) For f ∈ C∞

c (G/H),

f (eH) =
∑

P∈F,δ∈M̂P

dim(V(δ)disc)∑
i=1

(#W (aP ))
−1
∫

ia∗P
P�

ηi ,ηi
δ,ν ( f )µP (δ, ν) dν,

where µP (δ, ν) is defined in Theorem 34.
(iii) These formulas are also true for f ∈ C(G/H).

Remark The “Plancherel factors” µP (δ, ν) have not been completely computed.
The group case was done by Harish-Chandra, [HC76b] (see also A. Knapp and G.
Zuckermann, [KZ82], for another approach). As these Plancherel factors are coming
from intertwining integrals, their computations are in principle reduced to:

(a) the determination of embedding of discrete series into principal series attached
to P∅ (see [Ōsh88] and [Car]),

(b) their determinations for P = P∅.

Notice that the computations of Harish-Chandra in the group case were done by
totally different methods, i.e., methods of invariant harmonic.

Acknowledgement. I thank very much S. Souaifi for his help and useful comments during the
preparation of this survey.
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74 (1957), 85–177.

[Ber88] J. N. Bernstein, On the support of Plancherel measure, J. Geom. Phys. 5 (1988),
no. 4, 663–710 (1989).

[BW80] A. Borel and N. R. Wallach, Continuous cohomology, discrete subgroups, and
representations of reductive groups, Princeton University Press, Princeton, N.J.,
1980.

[BD92] J.-L. Brylinski and P. Delorme, Vecteurs distributions H -invariants pour les
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810, 4, 157–177, Séminaire Bourbaki, Vol. 1995/96.

[Del97b] P. Delorme, Troncature pour les espaces symétriques réductifs, Acta Math. 179
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